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1 Preface.

It is a truth universally1.1 acknowledged that algebraic geometry deals
with solution sets of systems of polynomial equations. However, it has be-
come significantly more abstract, and study often bifurcates between very
basic examples and rigorous treatment in the language of schemes. I don’t
think either approach is ideal for an introductory course in the subject, and
these notes are an attempt of providing some meaningful algebraic geometry
content while avoiding or suppressing many of the technical details. They
are loosely based on the introductory course in algebraic geometry run at
Rutgers University in the Spring of 2024. The intended audience are ad-
vanced undergraduate and beginner graduate students who are interested
in algebraic geometry, as well as researchers of all levels in adjacent areas.
When it comes to mathematical background, I am assuming basic knowl-
edge of commutative algebra and complex analysis. Some familiarity with
differential geometry and algebraic topology is also helpful.

The defining feature of these notes is the liberal use of hand waving ar-
guments where precise arguments would use too much technique, such as
schemes and cohomology, or just where I get lazy. Thus, it is not meant
to serve as a substitute of thorough study of standard texts such as Robin
Hartshorne’s book [20] or Ravi Vakil’s notes [28]. Instead, it is a highly id-
iosyncratic attempt to highlight some of the beautiful examples of algebraic
geometry and to introduce the reader to the vast expanse of the field.

Most of the time, we will be working over the field C of complex numbers,
so that intuition and ideas from complex analysis and differential geometry
can be applied. Occasional references are made to varieties over other fields
of characteristics zero, but we really don’t venture into positive characteris-
tics. Each section roughly corresponds to one 80 minute lecture; two sections
can be covered in a week. Exercises after each section are meant to be rather
easy, with few exceptions.

These notes are intended to be a free resource and will be available on the
arXiv and on my home page. Comments and suggestions are appreciated.

1.1 in grant applications
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2 Algebraic subsets of Cn and Hilbert’s Nullstel-
lensatz.

We start with some examples of systems of polynomial equations that have
been studied by algebraic geometers.

• xy − 1 = 0 in C2. • x2 − y2 = 1 in Q2.

•


xt− yz = 0
xz − y2 = 0
yt− z2 = 0

in C2. • y2 − y = x3 − x in Q2,R2, or C2.

• x2 = y3 in C2. •
{

detA = 0
trA = 0

in Cn
2
.

• all 3× 3 minors of skew − symmetric n× n matrices are zero, in C
n(n−1)

2 .

Typical questions that one can ask about these equations and their solution
sets include the following.

• Find all solutions.

• Given two solution sets, are they “the same”? Similar?

• If the solution set is a (real or complex) manifold, what is its topology?

• What are the automorphisms of the solution set (in the appropriate
sense)?

2.1

We will now focus on Cn and the ring of polynomial functions C[x1, . . . , xn]
on it.
Definition 2.1. For a subset S of C[x1, . . . , xn], we define its set of zeros
by

Z(S) := {(a1, . . . , an) ∈ Cn, such that ∀f ∈ S there holds f(a1, . . . , an) = 0}.

We list some easy properties of Z(S) below. The reader is encouraged to
prove these assertions on their own.

2.1 There are a lot of horizontal lines in these notes to remind the reader to take a sip
of their drink of choice.
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• Z(S) depends only on the ideal I = (S). Thus, one can always replace
S by its finite subset without changing Z(S), because C[x1, . . . , xn] is
a Noetherian ring.

• If I ⊆ J then Z(I) ⊇ Z(J).

• Z(I + J) = Z(I) ∩ Z(J). More generally, Z(
∑

α Iα) =
⋂
α Z(Iα).

• For ideals I and J there holds Z(I ∩ J) = Z(IJ) = Z(I) ∪ Z(J).

• We can moreover restrict to the case of radical ideals. Recall that
√
I = {f ∈ C[x1, . . . , xn], such that fk ∈ I for some k ≥ 1}

and an ideal I is called radical if
√
I = I. There holds Z(

√
I) = Z(I),

and the ideal
√
I is radical by Exercise 1.

Examples. Cn = Z({0}); ∅ = Z(C[x1, . . . , xn]) = Z({1});

{(a1, . . . , an)} = Z((x1 − a1, . . . , xn − an)).

We can also go back, from subsets of Cn to ideals in C[x1, . . . , xn].

Definition 2.2. For a subset V ⊆ Cn we define the ideal

I(V ) := {f ∈ C[x1, . . . , xn], such that f(p) = 0 for all p ∈ V }.

Remark 2.3. For any point p = (a1, . . . , an) ∈ Cn the kernel of the evalua-
tion map f ∈ C[x1, . . . , xn] 7→ f(p) ∈ C is the maximal ideal (x−a1, . . . , x−
an). Thus, I(V ) is the intersection of all maximal ideals that correspond to
points p ∈ V .

Definition 2.4. We define Zariski topology on Cn by declaring sets Z(I) to
be its closed sets.

This is indeed a topology because finite unions and arbitrary intersections
of Z(I) are also sets of this form. Note that Zariski topology is very weak, in
the sense that it does not have a lot of closed or open sets. For example, when
n = 1, proper Zariski closed subsets of C are precisely the finite subsets.
In particular, it is (horribly) non-Hausdorff, i.e. one can not find disjoint
open neighborhoods of distinct points. Still, Zariski topology provides an
important conceptual viewpoint.

Remark 2.3 in fact describes all maximal ideals of C[x1, . . . , xn].

Theorem 2.5. (weak Hilbert’s Nullstellensatz) All maximal ideals of the
ring C[x1, . . . , xn] are of the form (x− a1, . . . , x− an).
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Corollary 2.6. For an ideal I of C[x1, . . . , xn] we have

(Z(I) = ∅) ⇐⇒ (I = (1)).

Proof. It is a standard consequence of Zorn’s lemma that an ideal I is proper
if and only if it is contained in some maximal ideal. This ideal corresponds
to a point in Z(I) by Theorem 2.5.

We do not give a proof of Theorem 2.5 but refer the reader to [11] instead.
The statement fails for fields which are not algebraically closed, already for
n = 1. As a consequence of the weak Hilbert’s Nullstellensatz, the set
Z(I) can be identified with the set of maximal ideals of C[x1, . . . , xn] which
contain I, which in turn are in natural bijection to the set of maximal ideals
of the quotient ring C[x1, . . . , xn]/I.

Theorem 2.7. (regular strength Hilbert’s Nullstellensatz) For any ideal I
in C[x1, . . . , xn] there holds

I(Z(I)) =
√
I.

Proof. If f ∈
√
I, then fk ∈ I for some k ≥ 1, therefore fk(p) = 0 for all

p ∈ Z(I). Thus f(p) = 0 for all p ∈ Z(I), so f ∈ I(Z(I)). This proves ⊇
inclusion.

The other direction is harder. We will use what’s known as the Rabi-
nowitz trick, which is a particular case of localization. Consider 0 6= f ∈
I(Z(I)). In C[x1, . . . , xn, t] the ideal

Î = (ft− 1) + (I)

has no zeros. Here (I) denotes the ideal in the ring C[x1, . . . , xn, t] generated
by I. Indeed, any point (a1, . . . , an, b) in the set of zeros of Î must have
(a1, . . . , an) in the set of zeros of I. Then ft− 1 takes value 0 b− 1 6= 0 on
(a1, . . . , an, b), contradiction.

By Corollary 2.6, the ideal Î is the whole ring, and in particular it con-
tains 1.2.2 In other words, we have in C[x1, . . . , xn, t]

1 = (f(x1, . . . , xn)t− 1)g0(x1, . . . , xn, t) +
∑
i

fi(x1, . . . , xn)gi(x1, . . . , xn, t)

2.2 It is a common trick to replace the statement that an ideal is equal to a ring by the
statement that this ideal contains 1. If you study commutative algebra long enough, you
will get sick of it.
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where fi ∈ I. Consider the image of this equality in the field of rational
functions in n variables C(x1, . . . , xn) under the algebra map

C[x1, . . . , xn, t]→ C(x1, . . . , xn)

which sends xi to xi and t to f(x1, . . . , xn)−1. Then the above equation
becomes

1 = 0 +
∑
i

fi(x1, . . . , xn)
hi(x1, . . . , xn)

f(x1, . . . , xn)ki

for some polynomial hi and some ki ≥ 0. After clearing denominators, we
conclude that fk lies in I, which proves the ⊆ inclusion.

As a corollary of Theorem 2.7, we see that Zariski closed subsets Z(I)
of Cn are in bijection with the radical ideals of C[x1, . . . , xn] (including the
whole ring).

Exercise 1. Prove that
√√

I =
√
I.

Exercise 2. Prove that Z(I(V )) = V (the closure in Zariski topology).

Exercise 3. Find counterexamples to Theorems 2.5, 2.7 and Corollary
2.6 for C replaced by R.

3 Irreducible components. Dimension theory. Pro-
jective spaces. Algebraic varieties.

Let I be a proper ideal in the polynomial ring C[x1, . . . , xn] and let Z(I) be
the corresponding nonempty Zariski closed subset in Cn.

Definition 3.1. We call Z(I) reducible if it can be written as a union of
two proper closed subsets Z(I) = Z(I1) ∪ Z(I2) with Z(Ii) 6= Z(I). It is
called irreducible otherwise.

For example, for n = 2 and I = (x1x2) we have

Z(I) = {(a1, a2), a1a2 = 0} = Z(I1) ∪ Z(I2)

where I1 = (x1) and I2 = (x2).

We remark that while disconnected algebraic sets are always reducible,
the converse is not true, as the below picture indicates.
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irreducible reducible, connected

q
reducible, disconnected

Theorem 3.2. Every closed subset Z(I) can be uniquely written as a dis-
joint union of irreducible closed subsets of Z(I) none of which is contained
in another one.

Proof. In the existence direction, we start with Z(I) and keep decomposing
it into disjoint unions of smaller subsets. If we could keep doing this indefi-
nitely, we would get a decreasing chain of closed subsets which are properly
contained in one another. This would correspond to an increasing chain of
ideals of C[x1, . . . , xn], in contradiction with it being Noetherian. Thus, we
can write Z(I) as a finite union of irreducible subsets, and it remains to
remove the subsets that are contained in others.

In the uniqueness direction, suppose we have two finite decompositions

Z(I) =
⋃
α

Z(Iα) =
⋃
β

Z(Iβ).

For each α we have

Z(Iα) =
⋃
β

(Z(Iβ) ∩ Z(Iα)).

By irreducibility of Z(Iα), one of Z(Iβ) ∩ Z(Iα) must equal Z(Iα). This
implies that for every α there exists β such that Z(Iα) ⊆ Z(Iβ). Of course,
the same is true for each β, so we get Z(Iα) ⊆ Z(Iβ) ⊆ Z(Iα′). Then
Z(Iα) ⊆ Z(Iα′) implies α = α′ and we get Z(Iα) = Z(Iβ). Since this
works for each α (and for each β in the other direction), we have proved
uniqueness.

Remark 3.3. The decomposition of Z(I) into irreducible components is a
particular example of the commutative algebra statement that for any ideal
I in a Noetherian ring, the radical

√
I can be uniquely written as

√
I =

⋂
i

pi

where pi are a finite set of minimal primes that contain I. See [2] for details,
or just trust me.3.1

3.1 I am building up your tolerance for accepting random technical claims.

8



We will now discuss the concept of dimension of algebraic subsets Z(I) of
Cn. If Z(I) is irreducible, we will also call it an algebraic subvariety of Cn.
We have a concept of dimension for smooth complex manifolds, and algebraic
subvarieties are not that far from them, so it is natural to expect some kind
of definition here. The technical arguments in commutative algebra that
one needs in order to prove the following claims are rather formidable, but
we will just take it for granted that dimension works as one expects.

Definition 3.4. For an irreducible Z(I) the ideal I is prime (see Exercise
1) so one can look at the quotient ring A = C[x1, . . . , xn]/I. Its quotient
field QF (A) is a finitely generated field extension of C and we define

dimC Z(I) := tr.deg.CQF (A)

where tr.deg. stands for the transcendence degree of the extension.

Definition 3.5. The quotient field QF (A) is called the field of rational
functions on X = Z(I).

Clearly, dimension of Cn is the transcendence degree of the field of ra-
tional functions C(x1, . . . , xn) which is n. Furthermore, every chain of irre-
ducible subvarieties can be enhanced to a chain that has exactly one member
of each dimension.

point ( curve ( surface ( · · · ( Cn

The corresponding property of the chains of prime ideals in C[x1, . . . , xn]
goes under the name of catenary.

Warning 3.6. Algebraic geometers have a very annoying habit of drawing
complex varieties of dimension n as objects of real dimension n, with the
notable exception of Riemann surfaces (complex dimension one) which are
sometimes drawn as real surfaces. Pictures below are illustration of that. Of
course, once the dimension is three or higher, the paper itself is a limitation.

C Also C The rising C
(sorry, couldn’t resist)
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C2 {x2 + y2 = z2} ⊂ C3 C ⊂ C2 ⊂ C3

Unfortunately, there is not much we can do about it. It is still better than
trying to draw complex surfaces as real 4-dimensional objects that they are.

We now turn our attention to projective spaces and projective varieties.

Definition 3.7. A complex projective space CPn is defined as the set

(Cn+1 \ {0})/ ∼

of nonzero (n+ 1)-tuples of complex numbers under the equivalence

(x0, . . . , xn) ∼ (λx0, . . . , λxn), λ ∈ C∗.

In other words, CPn is the set of orbits of the scaling action of the multiplica-
tive group C∗ on Cn+1 \ {0}. Points on CPn are denoted by (x0 : . . . : xn)
with the colons used to distinguish them from points in Cn+1.

As stated, CPn only has a structure of a set, but it is easy to see that it is
in fact a complex manifold. Specifically, for each i ∈ {0, . . . , n} we consider
a subset Ui of CPn with xi 6= 0. Points of Ui can be uniquely scaled to(

x0

xi
: . . . : 1 : . . . :

xn
xi

)
so Ui can be identified with Cn. One can then use this covering to get CPn
the structure of a complex manifold, since transition functions can be easily
seen to be holomorphic.

The transition functions are in fact rational, and this gives CPn a struc-
ture of an algebraic variety. Wait, what?

We have not yet defined complex algebraic varieties, what are they? I will
avoid putting down a formal definition, but one should think of them as sets
glued from a finite number of charts Ui, with each of these charts identified
with an algebraic subvariety Z(Ii) in Cki for some ki. The intersections
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Ui∩Uj should be Zariski open subsets in the induced topologies on Ui and Uj
and should themselves be identified with some irreducible subsets Z(Iij) in
Ckij . The transition functions should be induced from ratios of polynomials
on Ckij , with denominators that are nonzero on Ui∩Uj .3.2 Complex algebraic
varieties come with two topologies, the usual (a.k.a. strong) one and the
Zariski one, both induced from the corresponding topologies on ambient Cki
on the charts Ui.

As one expects, morphisms of algebraic varieties should be Zariski locally
given by some ratios of polynomials. Overall, one should think of complex
algebraic varieties as being very similar to complex manifolds, but with
some singularities allowed. However, the morphisms are more restricted
than those of complex manifolds. For example, the map C→ C2 given by

f(x) = (x, ex)

is holomorphic but not algebraic and its image is not an algebraic subvariety
of C2. The reader is warned that some smooth complex manifolds can not be
given an algebraic structure. In the other extreme, there exist nonisomorphic
smooth complex algebraic varieties which are biholomorphic to each other,
see [20].

Remark 3.8. One can show that two different closed subvarieties Z(I) ⊆ Cn
and Z(J) ⊆ Cm are isomorphic as algebraic varieties if and only if the cor-
responding finitely generated algebras C[x1, . . . , xn]/I and C[x1, . . . , xm]/J
are isomorphic. It is a natural statement, since points are in bijections with
maximal ideals in these rings. We think of them as just the same variety in
two different realizations. Such varieties are called affine.

Remark 3.9. It is possible to show that for an algebraic variety X covered
by Ui ∼= Z(Ii), the quotients fields of C[x1, . . . , xki ]/I are the same for each i.
This associates to every algebraic variety a field of rational functions on it.
You should think of this as an algebraic analog of the field of meromorphic
functions on a complex manifold.

The main advantage of CPn as compared to Cn is the following.

Theorem 3.10. CPn is a compact complex manifold.

Proof. We can take the quotient by C∗ in two steps, first by R>0 and then
by S1 = {z ∈ C∗, |z| = 1}. We immediately see that (as real manifolds)

(Cn+1 \ {0})/R>0
∼= {(x0, . . . , xn) ∈ Cn+1, |x0|2 + . . .+ |xn|2 = 1} ∼= S2n+1.

3.2 A remark for the specialists is that we ignore the issues of separatedness.

11



Then CPn is an image of the compact set S2n+1 under a continuous map
and is therefore compact.

Let us look at small examples in more detail. For n = 1 we have CP1 =
C1 ∪ C1. As a set, it is C t {∞}. The two open sets U0 and U1 have
coordinates z = x1

x0
and z−1 = x0

x1
respectively. It is often called the Riemann

sphere.

CP1

◦

◦

U0U1

CP1

∞q

0q
CP2

C2

CP1

For n = 2, CP2 is not just C2 t {point}. Rather, we have to add a
whole line at infinity, because the complement to CP2 \U0 consists of points
(0 : x1 : x2), which is a copy of CP1. In fact, more generally we have
CPn = Cn t CPn−1.

The reason why algebraic geometers like CPn so much is because it is
the “smallest” way to compactify Cn to a compact complex manifold. In
contrast, if we just wanted a compactification as a real manifold, we could
do it with adding a single point.

Now we will talk about algebraic subvarieties in CPn. Consider the ring
C[x0, . . . , xn] equipped with the grading by the total degree of monomials

deg (xa00 · . . . · x
an
n ) = a0 + . . .+ an,

in other words, each xi is homogeneous of degree 1.

An ideal I ⊆ C[x0, . . . , xn] is called homogeneous if for all f ∈ I all
of the homogeneous components of f lie in I. Equivalently, an ideal I is
homogeneous if it has a set of homogeneous generators. Similarly to the
case of Cn, for a homogeneous ideal J we define the set Z(J) ⊆ CPn of
its zeros and for a set V ∈ CPn we define the homogeneous ideal I(V ) of
polynomials that vanish on V . As in the case of Cn, the sets Z(J) define
Zariski topology on CPn (these sets are declared to be closed).
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The relationship between ideals and sets is now more complicated. The
ring C[x0, . . . , xn] has a unique maximal homogeneous ideal (x0, . . . , xn)
called the irrelevant ideal.3.3 The zero set of the irrelevant ideal is empty.
Points in CPn correspond instead to homogeneous ideals given by n linearly
independent degree one generators. For example

(x1 − α1x0, . . . , xn − αnx0), (α1, . . . , αn) ∈ Cn

gives a point in U0 ⊂ CPn.

We conclude by writing several examples of algebraic varieties in projec-
tive spaces.

• {x0x2−x2
1 = 0} ⊂ CP2. We will later see that it is isomorphic to CP1.

• {x0x3 − x1x2 = 0} ⊂ CP3. This one is isomorphic to CP1 × CP1.

• {x0x2 − x2
1 = x0x3 − x1x2 = x1x3 − x2

2 = 0} ⊂ CP2. Twisted cubic,
isomorphic to CP1.

• {y2 − 4x3 − g2 x z
2 − g3 z

3 = 0} ⊂ CP2 with coordinates (x : y : z).
Elliptic curve.

• {x3y+y3z+z3x = 0} ⊂ CP2. Klein quartic; it has 168 automorphisms.

• Variables xij for 1 ≤ i < j ≤ n are homogenous coordinates in

CP
n(n−1)

2
−1. The equations are xijxkl − xikxjl + xilxjk = 0 for all 1 ≤ i <

j < k < l ≤ n. This is the Grassmannian Gr(2, n) in its Plücker embedding.

Exercise 1. Prove that for a proper ideal I ⊂ C[x1, . . . , xn] the set
Z(I) ⊆ Cn is irreducible if and only if

√
I is a prime ideal.

Exercise 2. Prove that Z(I) is reducible if and only if it contains a
proper nonempty subset which is both open and closed in the induced Zariski
topology.

Exercise 3. Verify that the transition functions for the cover of CPn by
Ui are indeed holomorphic.

3.3 As the reader may guess, the irrelevant ideal is in fact very important, although we
will not really see it in these notes.
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4 Hilbert polynomial. Statement of Bezout’s The-
orem on intersections of plane curves.

The algebraic manifestation of CPn and closed subsets Z(I) ⊆ CPn being
compact is that the graded ring

C[x0, . . . , xn]/I

for a homogeneous ideal I has finite-dimensional (as C-vector spaces) graded
components. This observation should be contrasted with the Cn case where
C[x1, . . . , xn]/I is just an infinite-dimensional C-vector space. Moreover, it
turns out that the integers

ad := dimC(C[x0, . . . , xn]/I)deg=d

satisfy a number of fascinating properties. We will first state these proper-
ties, then give examples, and then prove them.

Theorem 4.1. For a homogenous ideal I, the numbers ad defined above
satisfy the following.

• There exists a one-variable polynomial P with rational coefficients such
that for all large enough d we have P (d) = ad. This P is called the
Hilbert polynomial of C[x0, . . . , xn]/I or of Z(I).

• Degree of P is equal to the dimension of Z(I).

• The Hilbert function f(t) :=
∑

d≥0 adt
d is a rational function of the

form

f(t) =
g(t)

(1− t)dimZ(I)+1

with a polynomial g(t) such that g(1) 6= 0.

The first example to consider is I = {0}. Then ad equals to the number
of monomials of total degree d in n + 1 variables, which in turn equals to
the number of ways of picking n separators among n+ d dots. So we get for
all d ≥ 0

ad =

(
n+ d
n

)
=

1

n!
(d+ n) . . . (d+ 1)
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which is clearly a degree n polynomial in d. The generating function∑
d≥0

td

n!
(d+ n) . . . (d+ 1) =

∑
d≥−n

td

n!
(d+ n) . . . (d+ 1)

=
1

n!

(
∂

∂t

)n( 1

1− t

)
=

1

(1− t)n+1

so the claims of Theorem 4.1 hold.

Our next example is a curve in CP2. Let f(x0, x1, x2) be a homogeneous
polynomial of degree k without repeated factors.4.1 Let I = (f). Since
multiplication by f is an injective map in C[x0, x1, x2], we have

(C[x0, x1, x2]/I)deg=d = (C[x0, x1, x2]deg=d)/(C[x0, x1, x2]deg=d−k)

and

ad =

{
(d+2)(d+1)

2 − (d−k+2)(d−k+1)
2 , if d ≥ k;

(d+2)(d+1)
2 , if 0 ≤ d < k.

Consequently, for d large enough we get

ad = dk − k(k − 3)

2

which is linear in d. For the generating function we get

f(t) =
1

(1− t)3
− tk

(1− t)3
=

∑k−1
i=0 t

i

(1− t)2
,

so again the conditions of Theorem 4.1 hold.

We will now discuss the proof of Theorem 4.1. First of all, it is convenient
to consider not just C[x0, . . . , xn]/I but all finitely generated graded modules
M over C[x0, . . . , xn]. We will also introduce the grading shift notation:
For a graded module M , the graded module M(r) has the same module
structure, but the grading is redefined by

M(r)deg=k = Mdeg=k+r.

Then for any graded module M , multiplication by xn gives a map of graded
modules4.2

M(−1)
xn−→M.

4.1 As in the Cn case, we want our ideal I to be radical.
4.2 It is good for one’s mental health to only consider degree zero maps of graded modules,

and use grading shifts when needed.
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The kernel and cokernel of this map are whimsically denoted by K and C
respectively. The exact sequence

0→ K →M(−1)
xn−→M → C → 0

induces exact sequences at each degree, so we get4.3 for the generating func-
tions

fK(t)− fM(−1)(t) + fM (t)− fC(t) = 0. (4.1)

We then observe that fM(−1)(t) = tfM (t) and we get

(1− t)fM (t) = fC(t)− fK(t).

It remains to argue that K and C are finitely generated modules over
C[x0, . . . , xn−1] and apply induction on n (with n = 0 case just graded
finite dimensional vector spaces) to see that f(t) is a rational function with
denominator that is a power of (1 − t). The relation to dimZ(I) is signifi-
cantly more difficult to prove and the interested reader is referred to [2] or
[12].

Remark 4.2. One can compute the field of rational functions on Z(I) in
a manner analogous to the affine case (Remark 3.5). Specifically, for a
prime homogeneous ideal I we consider the graded integral domain A =
C[x0, . . . , xn]/I and the field of degree zero fractions, i.e. fractions of homo-
geneous elements of the same degree:

Rat(Z(I)) =

{
g1

g2
, deg g1 = deg g2, g1, g2 ∈ A

}
⊂ QF (A).

We will now talk about the Bezout’s theorem. To begin with, one can
show that all algebraic curves C in CP2 are given by a single homogeneous
polynomial equation f(x0, x1, x2) = 0 of some degree degC, with f not
having any repeated irreducible factors. Irreducible factors of f correspond
to the irreducible components of the curve.

Theorem 4.3. (Bezout’s theorem) Let C1, C2 ⊂ CP2 be curves with no
common components. Then the number of intersection points of C1 and C2,
counted with multiplicities, is equal to (degC1)(degC2).

We will delay the proof of Theorem 4.3 until the next section, but before
we even start, the statement of the theorem makes no sense without us
defining the multiplicity of intersection of two curves. For simplicity, let

4.3 This is Exercise 2.
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us assume that C1 and C2 intersect at a point (1 : 0 : 0). We will write
their equations in the open set U0 as polynomials f and g in C[y1, y2] where
yi = xi

x0
. Consider the subring R of the field of rational functions C(y1, y2)

given by

R =

{
F (y1, y2)

G(y1, y2)
, such that F,G ∈ C[y1, y2], G(0, 0) 6= 0

}
. (4.2)

Consider R/(f, g)R. Because f and g have no common factors, it turns
out4.4 to be a finite-dimensional vector space over C, and we define

mult(1:0:0)({f = 0} ∩ {g = 0}) = dimCR/(f, g)R. (4.3)

Let us now do some examples of intersection multiplicities to confirm
that they do what we would like them to do.

First, we will check that two distinct lines intersect with multiplicity one.
Without loss of generality, we may assume that these lines are {x1 = 0}
and {x2 = 0}. Then the ideal generated by y1 and y2 in R is precisely
the kernel of the evaluation map R → C with sends F (y1, y2)/G(y1, y2) to
F (0, 0)/G(0, 0), and thus the quotient is one-dimensional.

Now let us look at the intersection at (1 : 0 : 0) of {x2 = 0} and {x0x2−
x2

1 = 0}. In the affine coordinates y1, y2 on U0 this becomes the intersection
of the line {y2 = 0} and the standard parabola {y2 − y2

1 = 0}. We will
take the quotient of R by y2 and y2 − y2

1 in two steps. At the first step,
we mod out by y2 to get the subring of the field C(y1) which consists of all
rational functions with denominators that are nonzero at y1 = 0. Then we
need to further take a quotient by y2

1 (since y2− y2
1 is now simply y2

1) which
gives us a two dimensional space, with basis being the images of 1 and y1.
So we see that the horizontal line and the standard parabola intersect with
multiplicity 2, which makes sense.

Exercise 1. Prove that for a sequence of integers ad, d ≥ 0 the first two
conditions of Theorem 4.1 are equivalent to the last condition of it.

Exercise 2. Prove (4.1).

Exercise 3. Prove that the intersection multiplicity of {y2 = 0} and
{g(y1, y2) = 0} at (0, 0) is the multiplicity of the zero of g(y1, 0) at y1 = 0.

4.4 We will actually see it as part of the proof of the Bezout’s theorem in the next section.
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5 Proof of Bezout’s Theorem on intersection of
plane curves.

In this section, we will give a proof of Bezout’s theorem along the lines of the
first chapter of [20]. Some commutative algebra concepts will be explained
as we go along.

As in the statement of Theorem 4.3, we have two homogeneous polyno-
mials f1(x0, x1, x2) and f2(x0, x1, x2) without common factors, which give
plane curves C1 = {f1 = 0} and C2 = {f2 = 0}. The main idea is to consider
the ring C[x0, x1, x2]/(f1, f2) as a graded module over C[x0, x1, x2].

Proposition 5.1. For every nonzero finitely generated graded module M
over a graded Noetherian ring A there exists a finite filtration

0 = M0 (M1 ( . . . (Mk = M

so that for each i ∈ {1, . . . , k} the quotient module Mi/Mi−1 is isomorphic
to (A/pi)(di) where pi is a homogeneous prime ideal in A and di ∈ Z is a
grading shift.

Proof. We first observe that it is enough to show that every nonzero module
M has a submodule M1 isomorphic to (A/p)(d) for some homogeneous prime
ideal A and some degree shift d. Indeed, by the Noetherian property of M
there exists a maximum graded submodule M ′ of M for which the filtration
of Proposition 5.1 exists. If this submodule is not M , then there would be
a submodule in M/M ′ isomorphic to (A/p)(d) and then its preimage in M
would contradict maximality of M ′.

To find a submodule of M isomorphic to (A/p)(d), let us ask ourselves
what this means. Such isomorphism would send 1 ∈ (A/p)(d) to some
element m ∈ M . The degree of 1 in (A/p)(d) is, by the definition of the
grading shift,5.1 equal to (−d), and the ideal p can be recovered as

p = Ann(m) := {a ∈ A, such that am = 0}.

Conversely, given any nonzero homogeneous element m ∈M , the submodule
(m) ⊆M generated by m is isomorphic to (A/Ann(m))(−degm).

So now we are simply looking for a nonzero homogeneous element m ∈M
whose annihilator is prime. As with many things in mathematics, we will

5.1 Never trust any signs in any mathematical text ever!
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try to find such m by imposing on it some maximum or minimum property.
As it happens, the right thing to consider is nonzero homogeneous m such
that Ann(m) is maximum among all such annihilators, in the sense that
there are no nonzero homogeneous m′ with Ann(m′) ) Ann(m). Existence
of such m is assured by A being Noetherian. Now suppose that the ideal
Ann(m) is not prime. It means that there exist a, b ∈ A with abm = 0,
am 6= 0, bm 6= 0. Then Ann(bm) contains Ann(m) and it is strictly larger
because it contains a while Ann(m) does not. This finishes the proof.

Filtrations of Proposition 5.1 are typically non-unique, see Exercise 1. We
also remark that the same statement applies to finitely generated modules
over usual (non-graded) Noetherian rings, and the argument is essentially
the same.

Returning to the Bezout’s theorem, what primes can appear in a filtration
of M = C[x0, x1, x2]/(f1, f2)? The annihilator of any element of M contains
(f1, f2), so we have p ⊇ (f1, f2). Dimension theory then implies that these
are primes that correspond to intersection points of {f1 = 0} and {f2 = 0}
or the irrelevant ideal (x0, x1, x2).

We will now exploit the fact that when we have a filtration of finitely
generated graded modules as in Proposition 5.1, the Hilbert polynomial of
M is equal to the sum of the Hilbert polynomials of (A/pi)(d). The Hilbert
polynomial of C[x0, x1, x2]/(f1, f2) can be computed from the short exact
sequence5.2

0→ C[x0, x1, x2]/(f1)(−deg f2)
f2−→ C[x0, x1, x2]/(f1)→ C[x0, x1, x2]/(f1, f2)→ 0.

By the computation of the previous section, the Hilbert polynomial P (k) of
C[x0, x1, x2]/(f1) is k(deg f1)+c for some constant c. Therefore, the Hilbert
polynomial of C[x0, x1, x2]/(f1, f2) is

(k deg f1 + c)− ((k − deg f2) deg f1 + c) = (deg f1)(deg f2).

Let us now compute the Hilbert polynomials for (C[x0, x1, x2]/p)(d) where p
is either the irrelevant ideal or the ideal of a point. For the irrelevant ideal,
we get C[x0, x1, x2]/(x0, x1, x2) = C, located in degree zero. Regardless of
the shift, the Hilbert polynomial is zero. For an ideal that corresponds
to the point, we can take a linear change of variables and then look at

5.2 Exercise 2 shows that the multiplication map by f2 is injective on C[x0, x1, x2]/(f1).
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C[x0, x1, x2]/(x1, x2) ∼= C[x0]. The Hilbert polynomial is 1, which is again
unchanged under shifts.

Consequently, to prove Bezout’s theorem, it suffices to argue that the
ideal p of a point in CP2 appears exactly as many times in the filtration of
Proposition 5.1 for M = C[x0, x1, x2]/(f1, f2) as the multiplicity of intersec-
tion at that point. This is a straightforward calculation if one is comfortable
with the concept of localization in commutative algebra, which we will now
review.

Detour: Localization of commutative rings and modules. The
idea of localization is to look at a ring A and then ask “what would happen
if such and such elements of A were invertible”? It is a common theme in
algebra to ask for something and then see if there is some universal way
of accomplishing it. For example, the quotient ring is the universal way of
setting some elements of a ring to zero.

It turns out that it is indeed possible for any subset S of A to find a ring
AS together with the ring homomorphism5.3 A → AS such that every ring
homomorphism A→ B that sends elements of S to invertible elements of B
uniquely factors through A→ AS .

For the actual construction, if we are asking for elements of a set S to be
invertible, we might as well ask it for their products. So we will assume that
the set S is closed under multiplication. Elements of AS are then formal
fractions a

s with a ∈ A and s ∈ S, up to an equivalence relation

a

s
∼ s′a

s′s

for all a ∈ A and s, s′ ∈ S.

I lied, but only a little bit. The above ∼ is not an equivalence relation,
rather we need to take the smallest equivalence relation that it generates. If
A is an integral domain, then we can say a1

s1
∼ a2

s2
if and only if s1a2 = s2a1,

but if S has some zero divisors, this would still not be enough to ensure
transitivity of the relation, and the correct definition of equivalence is(

a1

s1
∼ a2

s2

)
⇐⇒ (∃s3 ∈ S, such that s3(s1a2 − s2a1) = 0) .

5.3 In this setting all rings are commutative and associative with 1 and ring homomor-
phisms send 1 to 1.
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What’s even better is that we can localize not only rings but modules
over rings. If we have a module M over a ring A with a multiplicatively
closed subset S, then we define the module MS as the set of fractions m

s
with m ∈M, s ∈ S up to the equivalence relation(

m1

s1
∼ m2

s2

)
⇐⇒ (∃s3 ∈ S, such that s3(s1m2 − s2m1) = 0) . (5.1)

Then MS is an AS-module, and localization of modules is a functor from the
category of A-modules to that of AS-modules that preserves exact sequences.
These are not entirely trivial statements, and the reader may want to look
in [2] or [12] for more details.

We now go back to the proof of the Bezout’s theorem.

We have a filtration of M = C[x0, x1, x2]/(f1, f2) from Proposition 5.1
and we want to find the number of times the ideal p = (x1, x2) appears in
Mi/Mi−1

∼= (A/pi)(di). Let us consider the multiplicatively closed set S

S = {homogeneous elements of C[x0, x1, x2] which are not zero at (1 : 0 : 0)}.

In particular, S contains x0, and if we localize C[x0, x1, x2] at it first we
obtain C[x1x0 ,

x2
x0
, x±1

0 ] (Laurent polynomials in x0 over the polynomial ring
C[y1, y2] for yi = xi

x0
). When we localize further by the image of S in

C[x1x0 ,
x2
x0
, x±1

0 ] we end up with the Z-graded ring R[x±1
0 ] where the ring R is

defined in (4.2). If we localize the moduleM , we end up with (R/(f̃1, f̃2))[x±1
0 ]

where f̃i = fi

x
deg fi
0

is the dehomogenization of fi. We can then take degree

0 part of this space to get exactly R/(f̃1, f̃2) that was used to define the
multiplicity of the intersection at the point (1 : 0 : 0).

So we will take the filtration of M from Proposition 5.1 and observe that
the operations of taking localization in S and degree 0 parts preserves the
filtration property, with the associated graded objects changing accordingly.
If we localize M = C[x0, x1, x2]/(x0, x1, x2) in S we get 0, because x0 both
annihilates MS and is invertible. Similarly, localization of C[x0, x1, x2]/p
for a prime ideal that corresponds to a point p other than (1 : 0 : 0) is
zero because there is an element in S which is zero at p but not at (1 :
0 : 0) and is therefore both zero and invertible on the localization. Finally,
(C[x0, x1, x2]/(x1, x2))S = C[x±1

0 ] and the degree zero of any grading shift of
it is a dimension one vector space over C. Thus, the number of occurrences
of the ideal of (1 : 0 : 0) in the filtration is exactly equal to the dimension
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of R/(f̃1, f̃2) which is the multiplicity of the intersection at this point by
(4.3). The same is true for all other points in CP2, which finishes the proof
of Bezout’s theorem.

Exercise 1. Consider the graded ring C[t] with t homogenous of degree
one. Consider M = C[t] as a module over itself. For any k ≥ 1, construct a
filtration of Proposition 5.1 of length k.

Exercise 2. Show that under the assumption that f1, f2 ∈ C[x0, x1, x2]
have no common irreducible factors, the multiplication by f2 map is injective
on C[x0, x1, x2]/(f1).

Exercise 3. Show that (5.1) defines an equivalence relation.

6 Line bundles and vector bundles.

We will now talk about a very important concept that will follow us through-
out these notes, that of a vector bundle. We will mostly do this in the setting
of complex manifolds rather than algebraic varieties, with an honest assur-
ance that the algebraic case is essentially the same.

Let X be a complex manifold. Informally, a rank r vector bundle W over
X is another complex manifold, with a map π : W → X such that:

• For each p ∈ X the fiber π−1(x) has a structure of a dimension r
complex vector space.

• This vector space structure varies holomorphically as x changes.

Now let us look at the formal definition.

Definition 6.1. A vector bundle W on a complex manifold X is the a com-
plex manifold equipped with a holomorphic map π : W → X and a structure
of a complex vector space on each fiber, that satisfies the following property.
For every x ∈ X there exists an open set U 3 x and a biholomorphism
π−1(U) ∼= Cr × U , such that the diagram

π−1(U) ∼= Cr × U
↘ ↙

U
(6.1)

commutes and is compatible with the complex vector space structures on the
fibers.
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Remark 6.2. A vector bundle W → X of rank r = 1 is called a line
bundle. If a bunch of mathematicians are talking, you can recognize algebraic
geometers by how frequently they say “line bundle”. It is really important in
algebraic geometry, for reasons we will see shortly.

Remark 6.3. Morphisms of vector bundles over X are defined as holomor-
phic maps that commute with projections to X and are linear maps on each
fiber. A vector bundle W → X of rank r is called trivial if it is isomorphic
as a vector bundle to Cr × X → X with the projection map.6.1 One can
think of arbitrary W → X as being locally trivial, i.e. there is a cover of X
such that the restriction of W → X to each open set of the cover is trivial.

Remark 6.4. If X has a structure of an algebraic variety, then a vector
bundle W → X must be locally trivial in Zariski topology. Otherwise, the
same definition applies, with holomorphic maps replaced by maps of algebraic
varieties.

Another way of thinking about a vector bundle is in terms of its tran-
sition functions. Suppose we have two open sets U and V in X with the
biholomorphisms as in (6.1). Restrictions to U ∩ V give a commutative
diagram

Cr × (U ∩ V ) ∼= π−1(U ∩ V ) ∼= Cr × (U ∩ V )
↘ ↓ ↙

U ∩ V

and therefore an automorphism of Cr × (U ∩ V ) which is compatible with
the projection to U ∩ V and the vector space structure on the fibers of this
projection. Such automorphisms are precisely of the form

(w, z) 7→ (A(z)w, z)

where A is a holomorphic function from U ∩V to GL(r,C). These functions
A must satisfy a certain cocycle condition for triple intersections. Con-
versely, given such functions with the appropriate compatibility on triple
intersections, we can use them to glue together copies of Cr × U to build a
vector bundle.

Remark 6.5. In the algebraic setting, the transition functions must be given
by matrices whose entries are rational functions with denominators that have
no zeros on U ∩ V .

If X is a point, then a rank r vector bundle over X is simply a dimension
r complex vector space. So it is not too surprising that whatever one can

6.1 Nothing is quite as disheartening as not understanding what something “trivial” is.
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do with vector spaces one can also do with vector bundles. For instance, we
have direct sums, tensor products, symmetric and exterior powers, duality,
and fiber-wise homomorphisms. Some basic properties of these constructions
are listed below.

• rk(W1 ⊕W2) = rkW1 + rkW2

• rk(W1 ⊗W2) = (rkW1)(rkW2)

• rk(SymkW ) =

(
rkW + k − 1

k

)
• rk(ΛkW ) =

(
rkW
k

)
• rk(W∨) = rk(W )

• Hom(W1,W2) = W2 ⊗W∨1
Did I mention that line bundles were of special interest?

Definition 6.6. Picard group Pic(X) is the (abelian) group of line bundles
on X, up to isomorphism (as line bundles). The product is ⊗, the identity
is the trivial line bundle C×X → X, and the inverse is W 7→W∨.

Remark 6.7. The Picard group of a manifold X is an important invariant
of X. It is a close relative of the class group of a number field.

An important construction that we will use later is that of a pullback
of vector bundles. Suppose we have a vector bundle π : W → Y and a
holomorphic map µ : X → Y . Then the pullback µ∗W → X is defined as
the fiber product X ×Y W , i.e. the subvariety in X ×W of pairs (x,w) that
map to the same point in Y under µ and π. In elementary terms, the fiber
of µ∗W over x ∈ X is naturally identified with the fiber of W over µ(x). We
have a commutative diagram

µ∗W −→ W
↓ ↓ π
X

µ−→ Y

of complex manifolds. Of course, rkµ∗W = rkW . The construction also
works in the algebraic setting.

We also need to talk about sections of line bundles.6.2 For a line bundle
π : L→ X we define a section s of L as the holomorphic function s : X → L

6.2The same applies to vector bundles, but we will focus on the line bundles.
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such that π ◦ s = idX . In very simple terms, we are picking one point in
each fiber of L→ X, in a holomorphic fashion.

The simplest example of a section is the zero section. This means that
in every fiber we pick the well-defined element 0 of the corresponding vector
space structure. For some line bundles this is the only (holomorphic) section.

When we pull back a line bundle, sections pull back with it. Namely,
suppose we have π : L → Y , µ : X → Y and the pullback commutative
diagram below.

µ∗L −→ L
↓ ↓ π
X

µ−→ Y

Then to any section s : Y → L we can associate a section µ∗s : X → µ∗L
by

µ∗s : x 7→ (x, s(µ(x)) ∈ X × L. (6.2)

We observe that (x, s(µ(x)) lies in µ∗L ⊆ X × L because s is a section, see
Exercise 1.

We can also consider sections not for the whole L → X but only over
some open subset U ⊆ X, i.e. the sections of the restriction of L → X to
π−1U → U . Spaces of such sections are sometimes denoted by Γ(U,L). If
U is all of X, the space Γ(X,L) is often called the space of global sections
of L.

We will also introduce some natural bundles on smooth manifolds which
will be used later. Namely, for any smooth manifold X we can construct its
holomorphic tangent bundle TX → X. Sections of this bundle on U are the
same as vector fields on U . Its dual TX∨ → X is called the cotangent bun-
dle. Sections of the cotangent bundle over U are precisely the holomorphic
1-forms on U .6.3

Definition 6.8. The top exterior power of the cotangent bundle ΛdimXTX∨

is called the canonical line bundle of X. Sections of it over U are holomor-
phic n-forms on U .

Exercise 1. Verify that (6.2) defines a section of µ∗L.

6.3 When I was learning calculus, the symbol dx really confused me. Was it a function
of two variables? Of one variable? I only found peace when it became clear that dx is a
section of the cotangent bundle.
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Exercise 2. Show that sections of a vector bundle W → X have a
natural structure of a vector space over C.

Exercise 3. Verify that sections of the line bundle C ×X → X are in
natural bijection to holomorphic functions on X.

7 Line bundle O(1) on CPn. Maps to projective
spaces.

We will now learn exactly why line bundles are so ubiquitous in algebraic
geometry – they are used to define maps to projective spaces.

We start by defining a very important line bundle on CPn which I will
denote by O(1). Recall that CPn can be viewed as a set of lines through
the origin in Cn+1. To set our notations, a point p = (x0 : . . . : xn) ∈ CPn
corresponds to the line lp = {(tx0, . . . , txn), t ∈ C}. We define as a set

O(1) = {(p, ϕ), where p ∈ CPn, ϕ ∈ l∨p }

with the projection map π : O(1) → CPn given by (p, ϕ) 7→ p. While
we immediately see that fibers of π are l∨p and thus have a natural one-
dimensional vector space structure, we have not yet given O(1) any complex
manifold structure. However, observe that over an open set U0 = {x0 6= 0}
there is a natural bijection

π−1U0
∼= C× U0

((x0 : . . . : xn), ϕ) 7→ (ϕ(1, x1x0 , . . . ,
xn
x0

), (x0 : . . . : xn)).
(7.1)

In plain words, we can nicely pick a point in lp for p ∈ U0 and evaluate ϕ at
that point. Of course, we can do the same for every index i and then verify
that the transition functions are holomorphic and rational, see Exercise 1.

We now observe that the geometric meaning of the homogeneous coor-
dinates x0, . . . , xn is that they are sections of the line bundle O(1)→ CPn.
Indeed, each xi is a linear function on Cn+1 and thus restricts to a linear
function on lp. It is also clear that xi is holomorphic (by looking at it on
each Uj). It is in fact true that

Γ(CPn,O(1)) = Cx0 ⊕ · · · ⊕ Cxn,

see Exercise 2.
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Using the group operations of line bundles, we can define O(k) → CPn
for all k ∈ Z as k-th power of O(1) in the Picard group Pic(CPn). Notably,
O(0) ∼= C× CPn is the trivial bundle and O(−1) has fiber over p naturally
identified with lp.

We are now ready to discuss maps to CPn. If we have a holomorphic
map f : X → CPn, we can consider the pullback diagram

f∗O(1) −→ O(1)
↓ ↓
X −→ CPn

and note that sections xi of O(1)→ CPn pull back to holomorphic sections
si = f∗xi of f∗O(1)→ X. An important observation is that for every point
p ∈ X at least one of the sections f∗xi does not equal zero in the fiber
of f∗O(1) → X.7.1 Indeed, the fiber of f∗O(1) → X at p is the fiber of
O(1)→ CPn at f(p) and we know that not all xi are zero at f(p).

In the other direction, if we have n + 1 holomorphic sections s0, . . . , sn
of a line bundle L → X, which are not simultaneously zero at any point of
X, we can define a map X → CPn by

p 7→ (s0(p) : . . . : sn(p))

Note that this map is well-defined and holomorphic. The easiest way to see
both is to appeal to a local biholomorphism with C×U . While not unique,
it is defined up to a holomorphic invertible scaling of the fiber, so all si(p)
are multiplied by the same factor.

These two constructions also work in the algebraic setting, and are in-
verses of each other. I.e., we have the following bijection.

{X → CPn with coords x0, . . . , xn} ←→
{line bundle L→ X, with sections s0, . . . , sn with no common zeros}

We do not prove this claim, because the proof is about as enlightening as
filing one’s taxes, but a motivated reader is welcome to do so.

We will now look at some examples.

7.1 We can not make sense of a value of a section, because identification of the fiber with
C is not canonical, but we can ask whether the value is zero, since the fiber has a natural
vector space structure.
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• Consider CP1 with the homogeneous coordinates (y0 : y1). Note that
y2

0, y0y1, y
2
1 can be viewed as sections of the line bundle O(2) = O(1)⊗2.

Then we can use them to define a map CP1 → CP2 by

(y0 : y1) 7→ (y2
0 : y0y1 : y2

1). (7.2)

The image of this map is a smooth curve in CP2 given by x0x2−x2
1 =

0. In fact, any smooth conic7.2 in CP2 is isomorphic to this one.
(Quadratic forms in three complex variables are uniquely determined
by their rank; rank two conics are unions of two lines, all rank three
conics are as above.) The fact that a conic curve can be parametrized
by a line is something that we have already seen in the rationalizing
substitution

(x(t), y(t)) =
( 2t

t2 + 1
,
t2 − 1

t2 + 1

)
which parametrizes the circle x2 + y2 = 1. It is useful in computing
certain indefinite integrals and in classifying Pythagorean triples.

This map is the simplest case of the so-called Veronese embedding.

• Consider the map CP1 → CP1 given by

(y0 : y1) 7→ (y2
0 : y2

1).

This map is well-defined, because y2
0 and y2

1 are never simultaneously
zero. It can be viewed as the extension of the map C → C given by
z 7→ z2 to CP1 by sending ∞ to ∞. It is a holomorphic map of degree
two, i.e. most points have two preimages.

• Consider the product CP1 ×CP1 with two projections π1, π2, and the
line bundle

O(1, 1) := π∗1O(1)⊗ π∗2O(1).

Holomorphic sections of O(1, 1) are homogeneous polynomials of bide-
gree (1, 1) in two sets of homogeneous coordinates. They define the
map from CP1 × CP1 to CP3 by

((y0 : y1), (z0 : z1)) 7→ (y0z0 : y0z1 : y1z0 : y1z1) (7.3)

The image is a degree two surface in CP3 given by x0x3 − x1x2 = 0.
As in the CP2 case, all maximum rank degree two (called quadric)
surfaces in CP2 are isomorphic to it.

7.2 a curve given by a quadratic equation
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We can see these two rulings on a real quadric in the case of the
hyperboloid of one sheet. It can be obtained by rotating a line around
the axis, and this provides one of the rulings. There are also such
rulings on the hyperbolic paraboloid – these surfaces are projectively
the same after compactification in RP3.

• More generally, one can use sections of O(1, 1) to embed CPm × CPn
into CP(m+1)(n+1)−1. It is called the Segre embedding.

We are now ready to define ample and very ample line bundles.

Definition 7.1. Let L → X be line bundle over an algebraic variety X.
We call L very ample, if its global sections can be used to embed X as a
subvariety of some projective space. We call L ample if some positive tensor
power L⊗k, k ≥ 1 of L is very ample.

There is a coordinate-free version of CPn and the maps to it. Let
V be a complex vector space of dimension n + 1. Then we denote by
PV = (V \ {0})/C∗ the space of lines in V . It comes with natural com-
plex and algebraic structures. Of course, PV is isomorphic to CPn, but the
isomorphism depends on the choice of a basis of V .

If we have a line bundle L→ X and a map

µ : W → Γ(X,L)

from a finite-dimensional complex vector space W to the space of holomor-
phic sections of L, then for any p ∈ X we consider the subspace Wp ⊆ W
of w ∈ W such that µ(w) is zero at p. Provided that the subspace Wp is
always proper (this is the coordinate-free analog of si not having common
zeros) the codimension of Wp is 1, and we get a map

X → PW∨, p 7→ Ann(Wx) ∈ PW∨

which sends p to the line in W∨ which is the annihilator of Wx. This map
is always holomorphic in the complex manifold setting and is a map of
algebraic varieties in the algebraic variety setting.

Remark 7.2. If the map W → Γ(X,L) is not injective, then the image of X
in PW∨ sits in a projective subspace of PW∨ and vice versa. For example,
the map

(y0 : y1) 7→ (y2
0 : y2

1 : y2
1)

gives a degree two map from CP1 to a line {x1 − x2 = 0} in CP2.
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Later we will use the following result about automorphisms of CPn.
Proposition 7.3. The automorphism group of CPn either as a complex
manifold or as an algebraic variety is naturally identified with PGL(n+1,C).
In the coordinate-free language, automorphisms of PV are identified with the
group PGL(V ) of vector space automorphisms of V up to scaling.

Proof. An invertible (n + 1) × (n + 1) complex matrix A gives a linear
change of coordinates and thus an automorphism of CPn. This gives a
group homomorphism

GL(n+ 1,C)→ Aut(CPn)

whose kernel are the constant diagonal matrices λ Id, λ 6= 0. Analogously,
we get an injective group homomorphism PGL(V ) → Aut(PV ). To prove
surjectivity, we need to argue that for every automorphism µ : CPn → CPn
the pullback of O(1) is isomorphic to O(1). We delay the verification of this
fact until Remark 8.3.

Exercise 1. Verify that transition functions for the identification of (7.1)
(but for all Ui) are holomorphic and rational on Ui ∩Uj and thus give O(1)
the structure of a line bundle over CPn in both holomorphic or algebraic
settings.

Exercise 2∗. Prove that every holomorphic section of O(1) → CPn
is a linear combination of homogeneous coordinates. Hint: for any such
section define the map f : (Cn+1 \ {0}) → C and show f is holomorphic.
Use Hartogs’ Lemma to extend f to a holomorphic function on Cn+1 and
use Taylor expansion and f(λz) = λz. The same argument shows that
holomorphic sections of O(k)→ CPn are zero for k < 0 are are homogeneous
polynomials of degree k for k ≥ 0.

Exercise 3. Prove that the maps (7.2) and (7.3) are embeddings of
complex manifolds.

8 Weil and Cartier divisors and class groups.

In this section, we will talk about certain abelian groups associated to a
complex algebraic variety, known as groups of Weil and Cartier divisors. The
term “divisor” goes back to nineteenth century and is ultimately related to
divisors of natural numbers, although this will not be immediately apparent.

30



We start with the Weil divisors. Let X be an algebraic variety. We
consider the group of Weil divisors WeilDiv(X), defined as the free group
generated by elements [Y ] for each codimension one subvariety Y ⊂ X. In
other words, elements of WeilDiv(X) are finite formal linear combinations∑

i

ai[Yi]

where ai ∈ Z and Yi are codimension one subvarieties of X.

If that were all there was to it, we would just have some huge free group,
with an uncountable generating set, with nothing interesting to show for it.
However, the key to this is that to any rational function f on X one can
associate a Weil divisor divf . The concept of a rational function, introduced
in Definition 3.5 and Remark 4.2 is an algebraic analog of the concept of a
meromorphic function8.1 and the two notions coincide for smooth complex
projective varieties, although this is far from obvious. We will construct8.2

divf in a second but will now make two important definitions.

Definition 8.1. A Weil divisor on X is called principal if it is equal to divf
for some rational function f . It is easy to see that principal divisors form a
subgroup of WeilDiv(X). The quotient group Cl(X) of the group of all Weil
divisors by the subgroup of principal Weil divisors is called the class group
of X.

For a meromorphic function of one variable, we can look at its zeros
and poles, with multiplicities, and this is exactly what divf is meant to
generalize. We will now get simultaneously vague and technical.

For simplicity, we will talk about Weil divisors on projective varieties
X ⊆ CPn. Let I be a prime homogeneous ideal in C[x0, . . . , xn], other than
the irrelevant ideal. Consider (cf. Remark 4.2) a nonzero element f of the
field of degree zero fractions in the quotient field of A = C[x0, . . . , xn]/I, i.e.

f =
g1

g2

where gi are homogeneous elements of A of the same degree. We would like
to define

divf =
∑
k

ak[Yk]

8.1 Meromorphic functions of several variables are defined as functions which can be
locally written as ratios of holomorphic functions.

8.2 sort of
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under certain assumptions on Z(I).

By a commutative algebra result known as Krull’s Principal Ideal theo-
rem, the minimal prime ideals Ik of A that contain gi correspond to codimen-
sion one subvarieties of Z(I). These will be the Yk for divf , but the question
remains how to define ak. It turns out that if Z(I) is smooth in codimension
one8.3 then the ring Ak which is the degree zero part of the localization of A
by homogeneous elements not in Ik is what’s known as a DVR8.4 (discrete
valuation ring). This implies that there is a group homomorphism νk from
QF0(A)∗ to the additive group of Z, and we define

divf =
∑
k

νk(f)[Yk].

If you feel that you are getting a run-around here, you are not entirely wrong.
Still, it is good to know that a prototypical case of a DVR is the ring C[[t]]
of formal power series in one variable, and the corresponding valuation ν
from its field of fractions, the field of Laurent formal power series C((t)),
sends f(t) to the degree of its leading term. So in this case it picks up the
orders of zeros and poles at t = 0 of a meromorphic function in t.

Let us look more specifically at the case I = {0}, i.e. Z(I) = CPn.
Codimension one subvarieties of CPn are in one-to-one correspondence to
irreducible positive degree homogeneous polynomials in C[x0, . . . , xn] up to
scaling. It is not an obvious statement, rather it follows from C[x0, . . . , xn]
being a unique factorization domain. Any rational function on CPn can be
written, uniquely up to a nonzero multiplicative constant, as

f =
∏
i

Fi(x0, . . . , xn)ai

where ai are nonzero integers and Fi are irreducible homogeneous polyno-
mials, such that ∑

i

ai degFi = 0.

Then the Weil divisor of f works out to be

divf =
∑
i

ai[{Fi = 0}]. (8.1)

8.3 There is a Zariski open subset U of Z(I) where the equations define a complex
submanifold, such that dimC Z(I)− dimC(Z(I) \ U) ≥ 2.

8.4 I am old enough to remember when this abbreviation acquired another meaning, by
now already archaic.
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It is easy to see that the condition
∑

i ai deg Yi = 0 is the only condition on∑
i ai[Yi] being a divisor of a rational function on CPn. Therefore, we have

Cl(CPn) ∼= Z, with the long exact sequence

1→ C∗ → Rat(CPn)∗ →WeilDiv(CPn)
deg−→ Z→ 0

where the degree map sends [Y ] to deg Y . Indeed, a divisor of a rational
function is zero if and only if the function is a nonzero constant.

Remark 8.2. If we pick a hyperplane H, for example {x0 = 0}, we get a
natural splitting of the surjective map deg which sends k to k[H].

Remark 8.3. In the proof of Proposition 7.3 we needed the statement that
for an automorphism µ : CPn → CPn the pullback of O(1) is isomorphic to
O(1). Since O(1) generates Pic(CPn), the pullback of O(1) must be O(±1).
However, O(−1) does not have any nonzero holomorphic sections and is
thus excluded.

There is another kind of divisors, namely Cartier divisors which we will
now describe. At a first glance, they have little to do with Weil divisors,
but we will soon see that the two notions often coincide.

Definition 8.4. A Cartier divisor on X is a collection of (Uα, fα)α∈I where
X =

⋃
α∈I Uα is a Zariski open cover of X and fα are rational functions on

Uα which are holomorphic on Uα, such that for any α, β the function fα
fβ

is

invertible on Uα∩Uβ. In particular, for every x ∈ X the functions fα for Uα
that contain x differ by an invertible function. We moreover identify Cartier
divisors (Uα, fα)α∈I and (Uα, fα)α∈J if they are compatible, i.e. the union
(Uα, fα)α∈ItJ is a Cartier divisor on X. Cartier divisors form a group,
with the operation given by products of fα on the common refinement of the
covers.

Here we are assuming that all Uα are some Zariski open subvarieties in
Cn, and the concept of rational function from Definition 3.5 is applicable.

Compared to the definition of Weil divisor, the definition of a Cartier
divisor is rather complicated. However, there is a natural way to associate
to any Cartier divisor a Weil divisor. Namely, to any divisor (Uα, fα)α∈I we
assign the unique Weil divisor on X which restricts to divfα on each Uα. In
other words, we are reading off the zeros and poles of the rational functions
fα, with multiplicities. The condition that fα

fβ
is invertible on Uα∩Uβ assures

that these Weil divisors on Uα coincide on the intersections. Therefore, they
can be glued together to a unique Weil divisor on X.
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Remark 8.5. If we are working with smooth varieties X, we can also go
from a Weil divisor to a Cartier divisor. Indeed,8.5 every codimension one
subvariety Y ⊂ X can be Zariski locally written as a divisor of a rational
function. We can take these local descriptions and put them together to form
a Cartier divisor. Then ratios fα

fβ
will have no poles or zeros on Uα ∩ Uβ,

which will make them invertible on them. I am suppressing the technical
details.

As with the Weil divisors, there is a concept of a principal Cartier di-
visor. It is simply given by (X, f) for a rational function f . Clearly, these
are identified with principal Weil divisors. In short, we have the following
diagram of abelian groups8.6

1→ InvRat(X)→ Rat(X)∗ → CartierDiv(X)→ CaCl(X)→ 0
‖ ‖ ↓ ↓

1→ InvRat(X)→ Rat(X)∗ → WeilDiv(X) → Cl(X) → 0
(8.2)

where the maps CartierDiv(X) → WeilDiv(X) and CaCl(X) → Cl(X) are
isomorphisms for smooth X. Here the rows are exact sequences, the notation
InvRat(X) stands for invertible functions on X (equal to C∗ for projective
X), with the operation of multiplication, and Rat(X)∗ means nonzero ra-
tional functions.

Remark 8.6. We can similarly talk about Weil and Cartier divisors on
complex manifold, with Zariski topology replaced by the usual one.

When X is not smooth, but has some singularities, the concepts of Weil
and Cartier divisors are no longer equivalent. Both groups are well-defined
for varieties X with so-called normal singularities,8.7 which means that X is
built out of integrally closed integral domains (see [2]). However, when X is
only normal, but not smooth, the maps CartierDiv(X)→WeilDiv(X) and
CaCl(X) → Cl(X) are only injective. Surjectivity fails if there are subvari-
eties of codimension one which are not given locally by a single equation.

Exercise 1. Find the Weil divisor divf for the rational function on C2

f(x1, x2) =
x3

1x2

x2
1 + x3

2 − x2
.

8.5 It is not at all obvious, but true!
8.6 I have debated whether to write 1 or 0 on the left, but chose 1 to honor the multi-

plicative nature of InvRat(X).
8.7 Mathematicians clearly have some unresolved psychological issues, hence the word

“normal” is used in far too many unrelated settings: normal vector, normal distribution,
normal subgroup, normal linear operator, etc.
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Hint: It is a very simple problem, do not overthink it.

Exercise 2. Find a Cartier divisor on CP1 so that the corresponding
Weil divisor is 5[0]− [i]. Hint: Use the cover of CP1 by U0 and U1.

Exercise 3. Consider the quotient of the ring of formal power series in
three variables

R = C[[x1, x2, x3]]/(x1x2 − x2
3).

Show that the ideal I = (x1, x3) ⊂ R is not principal.8.8 Hint: Look at the
dimension of I/(x1, x2, x3)I.

9 Cartier divisors as meromorphic sections of line
bundles.

In this section we will connect the concepts of Cartier and Weil divisors
with the previously considered concept of line bundles. The main idea is
that one can interpret every Cartier divisor as a meromorphic9.1 section of
an appropriate line bundle, up to isomorphism. For reasons that are not very
clear to me, it is difficult to find this viewpoint in the literature without the
language of sheaves. I am choosing to avoid the language of sheaves, and to
muddle through anyway.

Let X be a smooth complex manifold. Recall from Section 6 that a line
bundle π : L→ X is a holomorphic map from a smooth complex manifold L,
with the fibers π−1(x) given a structure of a one-dimensional complex vector
space. The simplest example is that of a trivial line bundle C×X → X and
all line bundles are glued from C× U → U for some open subsets U ⊆ X.

Recall that holomorphic sections of π : L → X are holomorphic maps
s : X → L such that π ◦ s = idX . If L = C × X → X is a trivial line
bundle, then holomorphic sections of it are in bijection with holomorphic
functions X → C. Similarly, we can talk about meromorphic sections of line
bundles. Indeed, locally every line bundle is (non-canonically) isomorphic to
C×U → U and we would be looking at meromorphic functions on U (ratios
of two holomorphic functions). If we change to another identification of

8.8 This is an infinitesimal version of the statement that the Weil divisor on the surface
x1x2 = x23 given by [x1 = x3 = 0] can not be locally given as divf .

9.1 or rational, in the algebraic category
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π−1U with C×U , we simply multiply by an invertible holomorphic function,
so meromorphicity of sections is well defined.

The analog of meromorphic sections in the case of smooth complex alge-
braic varieties is that of rational sections. It is basically the same thing, but
now everything is algebraic. The key observation is that to any nonzero9.2

rational section s of a line bundle L → X one can naturally associate a
Cartier divisor as follows.

Definition 9.1. Let s be a nonzero rational section of a line bundle π : L→
X. Pick an open cover X =

⋃
α∈I Uα such that L is trivial over each Uα

and choose one isomorphism π−1Uα ∼= C×Uα of line bundles over each Uα.
Under this isomorphism, s becomes a rational function fα and we can see
that (Uα, fα) form a Cartier divisor (see Exercise 1.)

Remark 9.2. Observe that if we multiply a rational section s of a line
bundle L → X by an invertible rational function on X (which we can do
because fibers of L → X have a vector space structure), the corresponding
Cartier divisor from Definition 9.1 is unchanged. One can think about it as
a particular case of the statement that if an isomorphism of vector bundles
L1 and L2 sends a rational section s1 of L1 into a rational section s2 of L2,
then the corresponding Cartier divisors are the same. Therefore, we see that
rational sections of line bundles, up to isomorphism, give Cartier divisors.

Proposition 9.3. If we have two line bundles L1 → X and L2 → X,
with two nonzero rational sections s1 and s2, then we can define the tensor
product s1⊗s2 as a rational section of the tensor product line bundle L1⊗L2.
This gives an abelian group structure on the set of line bundles with nonzero
rational sections up to isomorphism, and the map of Definition 9.1 is a group
homomorphism.

Proof. The identity of the group structure is given by the trivial line bundle
C × X → X with the section x 7→ (1, x), and it is easy to check group
properties. When checking that the map is a homomorphism, we can work
on a cover X =

⋃
α Uα for which both L1 and L2 have trivializations. Then

tensor product of sections gives rise to the product of the corresponding
functions fα,1 and fα,2, which corresponds to the product of the Cartier
divisors.

We can in fact reverse the construction of Definition 9.1. To every Cartier
divisor we will associate a line bundle, with a rational section, unique up

9.2 i.e. not identically zero
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to an isomorphism. This will provide Cartier divisors with a nice geometric
meaning.

Definition 9.4. Suppose we are given a Cartier divisor (Uα, fα)α∈I . Take
a copy of C×Uα for each α and glue them together by the following identi-
fication. We consider the equivalence relation of the set

⊔
α(C× Uα) with

(C× Uα) 3 (t, x) ∼
(
fβ(x)

fα(x)
t, x

)
∈ (C× Uβ)

for all x ∈ Uα∩Uβ and all t ∈ C. It is easy to see that this is an equivalence
relation. The set of equivalence classes L then has a structure of a complex
manifold (or algebraic variety), with a natural projection to X, and it has a
line bundle structure. Also observe that since

(fα(x), x) ∼ (fβ(x), x)

we can use fα to define a rational section of L→ X.

Note that if two Cartier divisors are equivalent, then the resulting line
bundles are isomorphic, with the isomorphism identifying the natural ratio-
nal sections. It is also easy to see that the constructions of Definitions 9.1
and 9.4 are inverses of each other.

Remark 9.5. For a rational function f on X, the principal Cartier divisor
divf corresponds to the trivial line bundle C × X → X with the rational
section identified with f , i.e.

s(x) = (f(x), x).

Proposition 9.6. For a smooth complex manifold X the class group Cl(X)
is isomorphic to the group Pic(X) of line bundles on X.

Proof. Two different nonzero rational sections s1 and s2 of the same line
bundle L → X differ by a global rational function g on X, i.e. s2(x) =
g(x)s1(x). Therefore, forgetting the section s and just remembering the line
bundle gives a map

Pic(X)→ CaCl(X)

from the group of isomorphism classes of line bundles to the group of Cartier
divisor classes on X, which is easily seen to be an isomorphism. Then we use
the identification of Carter and Weil divisor class groups from the previous
section.
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We will now illustrate this construction with an example. Consider the
line bundle O(1)→ CP2 where we use (x0 : x1 : x2) to denote the homoge-
neous coordinates on CP2 and a holomorphic section x0 of O(1). Recall the
standard cover CP2 = U0 ∪ U1 ∪ U2 where Ui = {xi 6= 0}. Each of the Ui is
isomorphic to C2, with coordinates

(
x1

x0
,
x2

x0
), (

x0

x1
,
x2

x1
), (

x0

x2
,
x1

x2
)

respectively. Recall that O(1) is defined as the set of linear functions on
lines λ(x0 : x1 : x2). For the points on U0, we can identify the fiber of O(1)
over them with C by looking at the values at the standard point (1 : x1x0 : x2x0 ).
This means that the first coordinate (=section x0) gives f0 = 1. For the
points on U1, the standard point is given by (x0x1 : 1 : x2

x1
), so the section

gives f1 = x0
x1

. We similarly get f2 = x0
x2

. To summarize, the Cartier divisor
that corresponds to the section x0 is therefore

{(U0, 1), (U1,
x0

x1
), (U2,

x0

x2
)}.

We can easily verify that the above description fits the definition of Cartier
divisor. For example, the ratio f1

f2
= x2

x1
is an invertible holomorphic function

on U1∩U2. The corresponding Weil divisor is built from the zeros and poles
of fi and is the line [{x0 = 0}] on CP2, with coefficient 1.

We will now compute the canonical line bundle K of CP2, which we
constructed in Definition 6.8. Rational sections of K are rational differential
2-forms, so we can pick one of them and compute the corresponding Cartier
divisor. More precisely, a form that locally looks like f(z1, z2) dz1 ∧ dz2 will
correspond to the function f(z1, z2), and these functions together will give
us a Cartier divisor. Let us start with the form

w = d

(
x1

x0

)
∧ d
(
x2

x0

)
.

It is precisely dz1 ∧ dz2 for the coordinates on U0, so the corresponding
function is f0 = 1. We now wish to compute it on U1, where the local
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coordinates are x0
x1

and x2
x1

. We compute

w = d

(
x0

x1

)−1

∧ d
(
x2

x1
(
x0

x1
)−1

)
= −

(
x0

x1

)−2

d

(
x0

x1

)
∧

((
x0

x1

)−1

d

(
x2

x1

)
−
(
x2

x1

)(
x0

x1

)−2

d

(
x0

x1

))

= −
(
x0

x1

)−3

d

(
x0

x1

)
∧ d
(
x2

x1

)
.

This gives us f1 =
(
x0
x1

)−3
(signs, or more generally invertible functions

do not matter) and similarly f2 =
(
x0
x2

)−3
. Then the corresponding Weil

divisor is −3[{x0 = 0}], and therefore the canonical line bundle over CP2 is
isomorphic to O(−3).

We finish this section with an extremely useful result, known as the
adjunction formula.
Proposition 9.7. Let X be a smooth complex algebraic variety and let
D ⊂ X be a smooth subvariety of codimension one. Let KX be the canonical
line bundle on X and let O(D) be the line bundle on X that corresponds to
the Weil divisor [D]. Then the canonical line bundle KD is isomorphic to

µ∗(KX ⊗O(D))

where µ∗ is the pullback of line bundles via the embedding map µ : D → X.

Proof. We will not present the actual proof,9.3 but rather the main idea
behind it. Holomorphic sections of KX ⊗O(D) correspond to meromorphic
top differential forms on X which have pole of order at most 1 along D and
no other poles. Then taking a residue at D gives top differential forms on
D.

Exercise 1. Verify that Definition 9.1 defines a Cartier divisor. Further
verify that different choices of isomorphisms π−1(Uα) ∼= C × Uα define the
same Cartier divisor.

Exercise 2. Verify that the relation ∼ in Definition 9.4 is indeed an
equivalence relation.

9.3 Shocking, I know.

39



Exercise 3. Check that the canonical line bundle of CPn is isomorphic
to O(−n− 1), for any n ≥ 1.

10 Cubic curves in CP2. Group law.

We are switching gears now, as we will do a lot in these notes, to go on a
long detour into the wonderful world of elliptic curves.

Recall that an irreducible curve in CP2 is the zero locus of an irre-
ducible homogeneous polynomial f(x0, x1, x2) in the homogeneous coordi-
nates x0, x1, x2. If the degree of f is equal to 1, then {f = 0} = {a0x0 +
a1x1 + a2x2 = 0} is a line. After a coordinate change, we may assume that
it is {x2 = 0}, so it is isomorphic to CP1. If the degree of f is equal to 2,
then f is a nonzero quadratic form in three complex variables. If the rank
is 1 or 2, then the corresponding polynomial x2

0 or x2
0 +x2

1 is not irreducible.
If the rank is three, then after a change of basis we get {x0x2 − x2

1 = 0},
which is isomorphic to CP1 in its Veronese embedding, which we considered
in Section 7.

The next case is deg f = 3, which is what we will focus on now. A general
cubic curve is given by ∑

i+j+k=3, i,j,k≥0

cijk x
i
0x
j
1x
k
2 = 0

and is thus determined by its ten coefficients cijk.

Proposition 10.1. Generic choice of coefficients cijk gives a smooth Rie-
mann surface.

Proof. Let us try to understand what it means for {f = 0} to be singular
at (1 : 0 : 0). This point lies in the open set U0 and we can dehomogenize
f = 0 to ∑

j+k≤3, j,k≥0

c(3−j−k)jk

(
x1

x0

)j (x2

x0

)k
= 0 (10.1)

in U0. In order for the curve (10.1) to pass through (1 : 0 : 0), we need
to have no constant term, i.e. we need c300 = 0. Moreover, if any of the
linear terms is nonzero, we get smoothness at (1 : 0 : 0) by the inverse
function theorem. This means that we need c210 = c201 = c300 = 0. Thus
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the subspace of the coefficient space C10 for which the curve is singular at
(1 : 0 : 0) is of complex codimension three.

As we vary the point p ∈ CP2, we get a family of 7-dimensional subspaces
of C10, and their union is then at most 9-dimensional (everything is algebraic
here, so dimension works like it should). Picking cijk generically simply
means staying away from this “bad” locus.

Remark 10.2. If a complex curve is smooth, then it is necessarily irre-
ducible by Bezout’s theorem. Indeed, a union of two curves would have
intersection points, and will be singular there.

Remark 10.3. All smooth cubic curves are diffeomorphic as real manifolds.
To see that, observe that the “bad” locus in the coefficient space is of real
codimension at least two, so the complement is connected. Thus any two
collections of coefficients that give a smooth cubic can be connected by a
path so that all of the intermediate Riemann surfaces are smooth. Locally,
small changes in coefficients clearly don’t affect the topology.

Remark 10.4. There is nothing special about the degree 3 here. In fact,
everything we discussed so far works for hypersurfaces of any degree in any
CPn. We leave the parameter count as Exercise 1. We also remark that it
further generalizes to the statement known as the Bertini’s theorem – given
a smooth subvariety of CPn, a generic hypersurface cut of it is also smooth.

So what is the topology of a smooth complex cubic curve? This is a
Riemann surface, which means that it is an orientable real surface. It is
also compact, since CP2 is compact. Any such surface is homeomorphic to a
sphere with g handles, where g is called the genus of the surface. So we can
rephrase the question as asking what is the genus of a smooth cubic curve
in CP2.

We will be using homogeneous coordinates (x : y : z) on CP2, to match
some traditional notations. We pick10.1 a cubic curve E of the form

y2z = (x− α1z)(x− α2z)(x− α3z) (10.2)

where αi are distinct complex numbers. We can try to visualize E by sketch-
ing the corresponding real curve in the case of αi being real numbers, in the
open subset z 6= 0.

10.1 Every smooth cubic can be written in this form after a coordinate change, but we do
not need this fact here.
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x
z

y
z

Let us check that E is smooth. Note that the restriction of the above
equation to the line z = 0 gives 0 = x3, so (0 : 1 : 0) is an inflection point of
E. In the local coordinates (xy ,

z
y ) at (0 : 1 : 0) the curve E is given by

0 =
z

y
− higher degree terms

which shows that E is smooth at (0 : 1 : 0).

For the points with z 6= 0, we might as well dehomogenize by setting
z = 1. Then singularity is governed by f(x, y, 1) = 0, ∂

∂xf(x, y, 1) = 0 and
∂
∂yf(x, y, 1) = 0 which gives

y2 − (x− α1)(x− α2)(x− α3) = 0,
−(x− α2)(x− α3)− (x− α1)(x− α2)− (x− α1)(x− α2) = 0,
2y = 0.

We then see that y = 0, so by the first equation x = αi for some i which
then does not fit the second equation since αi are all different.

We can think of our Riemann surface E given by (10.2) as

y

z
=

√(x
z
− α1

)(x
z
− α2

)(x
z
− α3

)
which we view as a double cover of CP1 with coordinates (x : z). This
double cover is ramified at α1, α2, α3 and∞, which means that a small loop
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around these points leads to an opposite branch of the square root. Thus, if
we make two cuts, one between α1 and α2 and another between α3 and ∞,
we will have two disjoint branches of the square root on the complement.
We visualize the two branches and the rules of going from one to another as
you cross the cut as follows.

α2α1 ∞α3

α2α1 ∞α3

We then flip the top part and extend the shores of the cuts.

After we glue the tentacles together, we get the real torus, a.k.a. sphere
with one handle. So the genus of the cubic curve is g = 1.
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What’s fascinating about the cubic curves is that they come with a group
structure! More precisely, let O be a point on E. It is common to pick O to
be an inflection point of E, but then one would have to prove that such point
exists, and I can not be bothered to do so. For points A,B ∈ E consider
the line AB (this would be the unique tangent line to E at A if A = B).
By Bezout’s theorem10.2 this line intersects E at three points, counted with
multiplicities. Two of these intersection points are A and B, and we call the
third one X. Then we similarly consider the line OX and denote the third
intersection point with E by Y . We declare

Y = A+B

for the newly defined addition operation +. We claim that it gives E a
group structure, which is of course abelian by construction, since lines AB
and BA are the same.

We will almost prove associativity, which is rather miraculous. Suppose
we want to prove (A + B) + C = A + (B + C). It is easy to see that the
operation is continuous, so it suffices to assume that A, B and C are general
points on the curve and then just take limits. In particular, we never have
to worry about tangent lines. We denote Y = A+B and W = B+C. Then
the following lines “compute” L = (A+B) + C and R = A+ (B + C).

ABX, XOY, Y CZ, OZL,

BCW, OWV, AV U, OUR.

Clearly, L = R is equivalent to Z = U .

Consider homogeneous cubic polynomials in x, y, z which vanish on the
eight points

A,B,C,X, Y,W, V,O. (10.3)

Since this vanishing is 8 linear conditions on the space C10 of the polynomi-
als, it is reasonable to expect that these conditions are linearly independent
and cut out a 2-dimensional space of polynomials. This is why this is only
an “almost” proof – it takes a fair bit of annoying arguments to establish
this linear independence. Now observe that the three cubic curves

E, ABX ∪OWV ∪ Y CZ, BCW ∪OXY ∪AV U
10.2 This is an overkill here, because the restriction of a cubic polynomial to a line will

have three roots.
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pass through all eight points (10.3). This means that there is a linear rela-
tion among the corresponding polynomials. Since these curves are pairwise
distinct, this linear relation involves all three polynomials. Therefore, if two
of these curves pass through a point, so does the third one. In other words,
the nine intersection points of E with ABX ∪ OWV ∪ Y CZ coincide with
the nine intersection points of E with BCW ∪OXY ∪AV U , and this implies
Z = U .

It is easy to check (Exercise 3) that O is the identity of the group law.
When O is an inflection point, then the inverse of a point A ∈ E is given
by looking at the third intersection point of the line AO with E. More
generally, the inverse is found as follows. Consider the tangent line to E at
O. It intersects E at O twice and at some other point O′ (which is O in the
inflection case). Then the inverse of A is the third point of intersection of
AO′ with E, see Exercise 3.

Exercise 1. Extend the count of the codimension of the bad locus to
arbitrary hypersurfaces of degree d in CPn by again figuring out what it
takes to be singular at (1 : 0 : . . . : 0).

Exercise 2. For the curve E given by (10.2) and O = (0 : 1 : 0) compute
explicitly the sum A + B for A = (x1 : y1 : 1) and B = (x2 : y2 : 1) (you
can assume x1 6= x2). Verify that the operation is associative. Hint: write
a parametric equation of the line AB, restrict the equation of E to it and
then use the Vieta’s formula for the sum of three roots of a cubic polynomial.
Don’t be shy about using software for algebraic manipulations.

Exercise 3. Verify that O is the identity of the group law on E. Verify
that the inverse B of A ∈ E is the third intersection point of the line AO′

with E.

11 Cubic curves as complex Lie groups. Lattice
description. Elliptic functions.

Recall that a cubic curve E was shown to be a compact Riemann surface,
equipped with an abelian group structure. It is not hard to see that the
group operation is holomorphic, which makes E into a complex compact Lie
group. Universal cover of E is then a one-dimensional simply-connected Lie
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group and is therefore isomorphic to (C,+).11.1 Then E must be a quotient
of C by a discrete additive subgroup. Compactness of E implies that it must
be given, as a compact Riemann surface, by

E ∼= C/(Zγ1 + Zγ2)

where γ1 and γ2 are nonzero complex numbers such that γ1
γ2

/∈ R. We will
denote the subgroup Zγ1 + Zγ2 by L and call it a lattice.

Remark 11.1. It is possible to scale C and pick the generators of the lattice
so that L = Z + Zτ with Im(τ) > 0.

We will now work on the complex manifold C/L. We want to show that
for any lattice L we can embed C/L into CP2, as a complex submanifold.
Our treatment is very similar to that of [22].

We are interested in meromorphic functions on C/L, which we can think
of as meromorphic functions f on C which are periodic with respect to L:

f(z + l) = f(z), for all l ∈ L.

These functions are called elliptic. Before finding meaningful examples of
such functions, we will investigate their properties.

Let f be an elliptic function for the lattice L. Since poles of f have no
accumulation points, there must be a finite number of them modulo L.

Proposition 11.2. For any elliptic function f there holds∑
w∈C/L

Resz=wf(z) = 0.

Proof. Consider the fundamental domain D of L given by a parallelogram
(see picture below). It is shifted by some complex number z0 so that it does
not pass through the poles of f .

11.1 If you are not familiar with Lie groups, either complex or real, this paragraph probably
doesn’t make much sense to you. Hopefully, it will motivate you to learn these topics. I
learned this stuff from [29], but there are many other viable sources.
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z0 z0 + γ1

z0 + γ2 z0 + γ1 + γ2

D

The sum of residues in D is the counterclockwise integral
∫
∂D f(z) dz. By

periodicity of f , the contributions of the opposite sides of D cancel.

Proposition 11.3. For a nonzero elliptic function f , the number of zeros
modulo L equals the number of poles modulo L, counted with multiplicities.

Proof. If f(z) is a nonzero elliptic function, then so is g(z) = f ′(z)
f(z) . It

remains to observe that poles of g occur at zeros and poles of f , and the
residues of g are equal to the order of the zero or pole (the latter with a
negative sign). Then we apply Proposition 11.2 to g and get the desired
result.

Proposition 11.4. Let wi be the zeros/poles of a nonzero elliptic function
f , one for each coset modulo L. We denote by mi the multiplicity of the
zero (positive) or pole (negative) of f at wi. Then∑

i

miwi ∈ L. (11.1)

Proof. Before starting the proof, we remark that changing wi to wi + l for
l ∈ L does not affect the conclusion. So we may again pick a fundamental
parallelogram D and write the sum in (11.1) as

1

2πi

∮
∂D

z
f ′(z)

f(z)
dz.

Because of the term z which is not periodic, we will not quite have cancel-
lation for the opposite sides of D. Rather, the sum of the integral over the
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top and the bottom segments will be

1

2πi

∫ z=z0+γ1

z=z0

z
f ′(z)

f(z)
dz − 1

2πi

∫ z=z0+γ1+γ2

z=z0+γ2

z
f ′(z)

f(z)
dz

=
1

2πi

∫ z=z0+γ1

z=z0

(
z
f ′(z)

f(z)
− (z + γ2)

f ′(z + γ2)

f(z + γ2)

)
dz = − 1

2πi

∫ z=z0+γ1

z=z0

γ2
f ′(z)

f(z)
dz

= − γ2

2πi

∫ z=z0+γ1

z=z0

d log f(z) ∈ γ2

2πi
(2πiZ) ∈ Zγ2 ⊂ L

and similarly for the other pair.

Having discovered these wonderful properties of elliptic functions, it
would be great to actually construct some non-trivial examples. An ur-
ban legend claims that once there was a PhD student who has been finding
the most fascinating properties of some class of functions, introduced by
their advisor. And just before the defense, they finally proved that all of
these functions were identically zero. Are we going to meet the same fate?
No!

If we have an elliptic function f which is holomorphic, then it must be
constant, by virtue of being a holomorphic function on a compact manifold
(otherwise, the image of f is compact, but it also has to be an open set).
Of course, constant functions are elliptic, but that’s not very interesting.

So we are forced to allow some poles. If we allow only one pole of order
1, up to lattice shifts, then by Proposition 11.2, the residue at this pole
would be zero, so it would not be a pole at all! So we should either have at
least two different poles of order one or one pole of order two. This makes
it reasonable to look for an elliptic function f on C that has a pole of order
2 at z = 0 and no other poles modulo L.

We know that the residue at z = 0 must be 0, so our first attempt at
finding such f is

f(z) =
1

z2
.

This obviously fails, because 1
z2

is not L-periodic.

Undeterred, we are going make it periodic. Consider

f(z) =
∑
l∈L

1

(z − l)2
.
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Great, this looks periodic. But, we have a slight problem – the series does
not have absolute convergence. Indeed, the number of lattice points l of
size approximately k is on the order of c k for some constant c, so we have
roughly c k terms of size 1

k2
, and the harmonic series diverges (although

rather slowly).

There is a nice trick that we can use to deal with it. Namely, for a fixed z
and l large enough, 1

(z−l)2 is approximately 1
l2

. So we may reasonably hope

that

f(z) =
∑
l∈L

( 1

(z − l)2
− 1

l2

)
(11.2)

will be an absolutely convergent series. And since we are just subtracting
constants, we should still have the periodicity.

We are very close. The only problem is that we have a 1
02

term in the
series, which prompts the following definition.

Definition 11.5. The Weierstrass elliptic function11.2 P(z) is defined by

P(z) =
1

z2
+
∑

06=l∈L

( 1

(z − l)2
− 1

l2

)
. (11.3)

We will now work to verify that P(z) is an elliptic function with pole of
order two at z ∈ L and no other poles. It is actually rather straightforward.
We first claim that P(z) converges uniformly and absolutely on any compact
set A in C \ L. Indeed, for 0 6= l ∈ L and z ∈ A we have∣∣∣ 1

(z − l)2
− 1

l2

∣∣∣ =
∣∣∣ z(2l − z)
(z − l)2l2

∣∣∣ ≤ ∣∣∣const

l3

∣∣∣
and since the number of l ∈ L of size roughly k is at most const k (see
Exercise 1), we get absolute and uniform convergence.

It is easy to see that the poles of P(z) are of order two and at z ∈ L only.
For example, all of the terms other than 1

z2
together converge absolutely

and uniformly in a small neighborhood of z = 0, by the same argument as
above. Thus, it remains to verify that P is L-periodic. This is not exactly

11.2 We will usually drop the adjective “elliptic”, but it should not be confused with the
continuous nowhere differentiable monstrosity also known as the Weierstrass function.
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surprising, given how we gradually constructed P, but let’s do it. Pick a
nonzero lattice element m. Then for z 6∈ L we have

P(z +m) =
1

(z +m)2
+
∑

06=l∈L

( 1

(z +m− l)2
− 1

l2

)
=

1

(z +m)2
+

1

z2
− 1

m2
+
∑
l 6=0,m

( 1

(z +m− l)2
− 1

l2

)
=

1

(z +m)2
+

1

z2
− 1

m2
+

∑
l′ 6=−m,0

( 1

(z − l′)2
− 1

(l′ +m)2

)
=

1

(z +m)2
+

1

z2
− 1

m2
+

∑
l′ 6=−m,0

( 1

(z − l′)2
− 1

(l′)2

)
+

∑
l′ 6=−m,0

( 1

(l′)2
− 1

(l′ +m)2

)
= P(z) +

∑
l′ 6=−m,0

( 1

(l′)2
− 1

(l′ +m)2

)
= P(z).

In the last equality we used that the change of variables l′ → −m− l′ sends

S =
∑

l′ 6=−m,0

(
1

(l′)2 −
1

(l′+m)2

)
to (−S), which implies S = 0.

We also observe that P(z) is an even function, i.e.

P(−z) = P(z),

which follows from making a change of summation index l → (−l) in the
definition of P.

Proposition 11.6. For every a 6∈ 1
2L the even elliptic function P(z)−P(a)

has zeros at amodL and −amodL with multiplicity one, and no other zeros.
For a ∈ 1

2L \ L the function P(z)− P(a) has zeros of order two at amodL
and no other zeros.

Proof. The function P(z)−P(a) has a pole of order two at L and no other
poles. Therefore, by Propositions 11.3 and 11.4 it has two zeros (with mul-
tiplicity, up to L) which add up to 0 modL. One of these zeros is a, so the
other is (−a). The situation with 2a ∈ L is special, because then we have
a = −amodL and a double zero.

Theorem 11.7. Every even elliptic function f(z) is a ratio of two polyno-
mials in P(z) with constant coefficients.

Proof. For a nonzero f(z), its zeros and poles come in pairs (a,−a) modulo
L. Moreover, the multiplicity of zero/pole at a with 2a ∈ L is even, see
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Exercise 2. Then we consider

g(z) = f(z)
∏

2a∈L,a6∈L
(P(z)− P(a))−

ma
2

∏
(a,−a),2a6∈L

(P(z)− P(a))−ma .

By construction, g(z) has no zeros or poles, except for 0 modL. Because the
total number of zeros and poles is zero, this means that g(z) has neither,
and is therefore a nonzero constant. This implies that f(z) is a ratio of
polynomials in P(z).

Exercise 1. Prove that for every lattice L there exists a constant c such
that the number of l ∈ L with k ≤ |l| < k + 1 is at most c k for all k ≥ 1.
Hint: Argue that the union of fundamental parallelograms of L centered at
such l lies in a certain annulus and thus has smaller area.

Exercise 2. Prove that for any even elliptic function f and any a ∈ 1
2L

the order of pole or zero of f at a is even. Hint: Consider the Laurent power
series of f at a and use f(2a− z) = f(−z) = f(z).

Exercise 3. Prove that every elliptic function can be uniquely written
as a sum of an even and an odd elliptic functions.

12 Weierstrass embedding of C/L into CP2.

Theorem 11.7 provides a good handle on even elliptic functions, but can
we find an odd elliptic function? No problem at all. Since P(z) is even,
its derivative P ′(z) is odd. Since as we saw in Exercise 3 of the previous
section, every elliptic function is a sum of an even and an odd one, we now
have a pretty good understanding of all elliptic functions. Specifically, we
see that every elliptic function can be written as

f(P(z)) + P ′(z)g(P(z))

where f and g are rational functions of one variable.

Observe that since P ′(z)2 is even, it can be written as a rational function
in P(z). But we can be a lot more precise than that, it is a polynomial of
degree 3 in P(z). We will prove it by looking at the Laurent expansions at
z = 0.
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We start with the Laurent power series expansion

P(z) =
1

z2
+ 0 + az2 + bz4 + . . .

where we can only have even powers because P(z) is even and the z0 term
is zero by Exercise 1. The constants a and b depend on the lattice L, but
we will not need explicit formulas for them. We differentiate and square to
get the following.

P ′(z) = − 2

z3
+ 2az + 4bz3 + . . .

P ′(z)2 =
4

z6
− 8a

z2
− 16b+ . . .

We also compute P(z)3 as

P(z)3 =
1

z6
+

3a

z2
+ 3b+ . . .

which gives

P ′(z)2 − 4P(z)3 = −20a

z2
− 28b+ . . .

and
P ′(z)2 − 4P(z)3 + 20aP(z) = −28b+ . . . .

Now observe that P ′(z)2− 4P(z)3 + 20aP(z) is an elliptic function with no
poles, so it must be a constant, which implies

P ′(z)2 = 4P(z)3 − 20aP(z)− 28b. (12.1)

Doesn’t it look suspiciously like the cubic curve (10.2) in CP2?

We will in fact show that the Riemann surface C/L is biholomorphic to
a smooth cubic curve in CP2.
Definition 12.1. Consider the map µ : C/L→ CP2 given by

µ(z) =

{
(P(z) : P ′(z) : 1), if z 6= 0 modL,
(0 : 1 : 0), if z = 0 modL.

Proposition 12.2. The map µ is holomorphic.

Proof. Clearly, µ is well-defined, because P and P ′ are L-periodic. Holo-
morphicity outside of z = 0 modL is immediate, since P has no poles there.
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To show holomorphicity at z = 0 observe that near z = 0 we can rewrite
the top line of the definition of µ as

µ(z) =

(
P(z)

P ′(z)
: 1 :

1

P ′(z)

)
(12.2)

and the elliptic functions P(z)
P ′(z) and 1

P ′(z) are holomorphic near z = 0 and
have limit 0 as z → 0.

Theorem 12.3. The map µ is an embedding of complex manifolds. The
image is a smooth cubic curve given by

x2
1x2 = 4x3

0 − 20a x0x
2
2 − 28b x3

2.

Proof. The first order of business is to prove that µ is injective. It is clear
that z = 0 modL and z 6= 0 modL map to different parts of CP2, since
the former has nonzero last coordinate in its image. Suppose now that
µ(z1) = µ(z2) with nonzero z1 6= z2 modL. This implies

P(z1) = P(z2), P ′(z1) = P ′(z2).

Observe that by Proposition 11.6 we must have z2 = −z1 modL and z1

can not be a 2-torsion point, i.e. 2z1 6∈ L. Then since P ′ is odd, we get
P ′(z2) = −P ′(z1) which means P ′(z1) = 0. However, one can easily show
that P ′(z1) = 0 occurs only at the three nonzero 2-torsion points of C/L
(this is Exercise 2), which proves µ is injective.

This injectivity is not enough to prove that we have an embedding.12.1

We also need to show that tangent vectors do not map to zero. For z 6∈ L,
this means to show that at least one of the derivatives of P and P ′ is nonzero
at z. To see that, observe that P ′(z) = 0 implies 2z ∈ L by Exercise 2. Then
P ′′(z) is nonzero, again by Exercise 2, because the multiplicity of the zero
of P ′(z) is one. Finally, the map µ is an embedding near z = 0, because in
(12.2) the function

P(z)

P ′(z)
=

1
z2

+ az2 + bz4 + . . .

− 2
z3

+ 2az + 4bz3 + . . .
= −1

2
z + . . .

has a nonzero derivative at z = 0.

We now know that the image is smooth. It also satisfies the above cubic
equation because of (12.1).

12.1 The map t 7→ (t2, t3) from C to C2 is injective but is not an embedding of complex
manifolds.
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We will now compare the group law on C/L with that on the cubic curve
of Theorem 12.3 where we use O = µ(0) = (0 : 1 : 0) to define the group
structure geometrically. The idea is simple: if we have a line a0x0 + a1x1 +
a2x2 = 0 (for simplicity assume that a1 6= 0) then the intersection points of
it with µ(C/L) are images under µ of the three roots of the function

a0P(z) + a1P ′(z) + a2.

Since the three poles of this function are all at 0 modL, the sum of these
zero is 0 modL by Proposition 11.4. Similarly, for α1 = 0, but a0 6= 0, the
line intersect µ(C/L) at µ(0) and two other points that add up to zero. If
we start with A = µ(z1), B = µ(z2), then the third intersection point of
AB with µ(C/L) is µ(−z1 − z2), and then the point A + B corresponds to
µ(z1 + z2), so the two group laws are matched under µ.12.2

Let us now interpret the map µ in terms of sections of line bundles.
If we start with a Weil divisor 3[0 modL], (a multiple of the codimension
one subvariety which is the origin in C/L), then it gives us a line bundle
O(3[0 modL]) and a global holomorphic section s of it (unique up to nonzero
scalar), which has locally a zero of order three at 0 modL under a trivial-
ization. All other meromorphic sections of O(3[0 modL]) are of the form sf
for an elliptic function f ; they are holomorphic if and only if f has a pole
of order at most three at 0 modL and no other poles. Such f are uniquely
determined by the coefficients a−3, a−2, a−1, a0 in their Laurent expansion
f(z) =

∑
k≥−3 akz

k, and we also have a−1 = 0, as this is the only residue of
f . Thus f lies in the linear span of

1, P(z), P ′(z)

Then sections sP(z), sP ′(z), s give us the map µ. See also Exercise 3 for
what happens for the Weil divisor 2[0 modL].

Remark 12.4. One should think of the Weierstrass embedding µ as provid-
ing C/L, which is initially only a complex manifold, with the structure of a
smooth algebraic variety.

Remark 12.5. The term “elliptic” comes from the fact that the “inverse”
of µ is obtained by integrating the form

dz =
dP(z)

P ′(z)
=

dx√
4x3 − 20a x− 28b

12.2 We are ignoring various issues of multiple roots, or one of A or B or A + B being
equal to (0 : 1 : 0). These can be handled by continuity, or directly.
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where x = x0
x2

and y = x1
x2

. These types of the integrals, with square roots
of cubic (or degree four) polynomials historically occurred in the problem of
computing the arc length of ellipses.

Exercise 1. Use the definition of P(z) to prove that it has zero constant
term in its Laurent series expansion at z = 0.

Exercise 2. Prove that P ′(z) has zeros exactly at the three points
zmodL such that 2z ∈ L but z 6∈ L, each with multiplicity one. Hint: Use
that P ′ is odd to prove that it has zeros at these points. Use Proposition
11.3 to prove that there are no other zeros or higher multiplicities.

Exercise 3. Prove that the space of global holomorphic sections of the
line bundle O(2[0 modL]) is two-dimensional and that the resulting map to
CP1 is a 2 : 1 map ramified at points z with 2z = 0 modL.

13 Jacobi theta function and divisors on elliptic
curves. Elliptic curves over Q.

We have proved in Proposition 11.4 that that if f is an elliptic function for
a lattice L ⊂ C, then for zeros/poles zi ∈ C/L with multiplicities mi there
holds ∑

i

mi = 0,
∑
i

mizi = 0 modL. (13.1)

We will argue in this section that the converse is true, i.e. for a set of points
zi ∈ C/L and integers mi that satisfy (13.1) there is a unique up to scaling
elliptic function f with poles and zeros at zi with multiplicity mi.

Uniqueness is clear because the ratio of two functions with the same
multiplicities of zeros and poles is holomorphic on C/L and thus constant.
Existence is harder to prove – we will do it with the help of the Jacobi theta
function which is a holomorphic function on C×H, whereH = {τ, Imτ > 0}
is the upper half plane.

Definition 13.1. We define a function of two variables (z, τ) ∈ C×H by

θ(z, τ) = eπiτ/2(2 sinπz)

∞∏
l=1

(1− e2πilτ )(1− e2πi(lτ+z))(1− e2πi(lτ−z)).
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Remark 13.2. There is no universally agreed upon set of notations when
it comes to the Jacobi theta functions. One can find other formulas in the
literature. However, they are all related to θ that we define by some simple
coordinate changes.

It is easy to see that the infinite product in the definition of θ con-
verges uniformly on compacts in C × H and thus defines a holomorphic
function of two variables. The key to this is the equality |e2πi(lτ+z)| =
|e−2π Imz||e−2π Imτ |l. It is also easy to prove that

θ(−z, τ) = −θ(z, τ), θ(z+1, τ) = −θ(z, τ), θ(z+τ, τ) = −e−2πiz−πiτθ(z, τ),
(13.2)

see Exercise 1.

Because of the convergence of the product, zeros of θ(z, τ) occur precisely
where the factors vanish.

{θ(z, τ) = 0} = {sinπz = 0} ∪
⋃
l>0

{1 = e2πi(lτ±z)}

= Z ∪
⋃
l>0

{z ∈ ∓lτ + Z} = Z + Zτ.

We also see that the vanishing is of first order, so in particular if we fix τ ,
the function θ(z) = θ(z, τ) has simple zeros at L = Z+Zτ . This can be also
proved using the transformation properties (13.2), see Exercise 2.

Proposition 13.3. Suppose that we have a finite set of points zk ∈ C and
integers mk such that ∑

k

mk = 0,
∑
k

mkzk = 0.

Then f(z) =
∏
k θ(z − zk, τ)mk is an elliptic function for L = Z + Zτ .

Proof. By (13.2) and assumptions on zk and mk,

f(z + 1) = f(z)
∏
k

(−1)mk = f(z),

f(z + τ) = f(z)
∏
k

e(πi−2πiz+2πizk−πiτ)mk = f(z).
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Theorem 13.4. For any set of points zk ∈ C/L with integers mk that satisfy∑
k

mk = 0,
∑
k

mkzk = 0 modL

there exists a unique up to scaling meromorphic function on C/L whose Weil
divisor divf is given by

∑
kmkzk.

Proof. By scaling C and L by a complex number, we may assume that
L = Z + Zτ .

We lift zk to C. We would like to be able to do it so that
∑

kmkzk = 0,
but a priori we can only get

∑
kmkzk ∈ L, if none of the mk is equal to ±1.

However, we can also split some mk into mk − 1 and 1 and do a separate
lift for 1 to get the sum to be exactly zero. Now the elliptic function f from
Proposition 13.3 defines a meromorphic function on C/L with prescribed
zeros and poles. (Note that we did not assume in Proposition 13.3 that zk
are pairwise distinct modulo L.)

Remark 13.5. The Jacobi theta function θ(z, τ) has a number of miraculous

properties. For example, for any

(
a b
c d

)
∈ SL(2,Z) there holds

θ

(
z

cτ + d
,
aτ + b

cτ + d

)
= ξ(cτ + d)

1
2 e

πicz2

cτ+d θ(z, τ)

where ξ is some 8-th root of 1 which depends only on a, b, c, d. Another great
result is the Jacobi triple product identity which leads to

θ(z, τ) = −i
∑
n∈Z

(−1)neπi((n+ 1
2

)2τ+(2n+1)z).

Proofs of these results, while not terribly difficult, lie outside of the scope of
these notes, see [9].

It is also worth mentioning that for a fixed τ the second logarithmic
derivative

d2

dz2
log θ(z)

is elliptic. By looking at the Laurent expansion at z = 0, we see that it
equals a constant minus the Weierstrass function.
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Now that we know that conditions (13.1) precisely describe the location
and multiplicity of zeros and poles of meromorphic functions on C/L, we
can use it to find Pic(C/L), which we know to equal the Weil class group
Cl(C/L).
Theorem 13.6. The class group of C/L is isomorphic to C/L⊕ Z.

Proof. The isomorphism is induced by the map WeilDiv(C/L) → C/L ⊕ Z
given by ∑

k

mk[zk] 7→

(∑
k

mkzk,
∑
k

mk

)
.

By Theorem 13.4 the kernel is exactly the subgroup of principal divisors on
C/L.

When we have a cubic curve E whose coefficients are rational numbers,
it is meaningful to ask about divisors on it that are defined over Q (it is
equivalent to looking at the group of points on E with rational coordinates).
By a theorem of Mordell (1922) this group has finite rank, i.e. it is

Zn ⊕ Torsion.

The torsion is well-understood, but the rank is harder. For example, it is
unknown whether the rank n is bounded from above. The current world
record of n = 28 was achieved by Elkies in 2006, see [13].

Another interesting topic is generalizations of C/L to higher dimensions.
For example, we may want to consider the complex manifolds C2/L where
L ∼= Z4 is a discrete subgroup. Remarkably, for a generic choice of L the quo-
tient C2/L is not an algebraic variety! For some, well-understood, conditions
on L the quotients are algebraic, and are referred to as abelian surfaces.

We would be amiss not to mention the Frey elliptic curves which play a
crucial role in the proof of Fermat’s Last Theorem. For a putative integer
solution to

an + bn = cn,

Hellegouarch [21] and then Frey [16, 17] considered the elliptic curve

y2z = (x− anz)x(x+ bnz)
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and proved that it would have some weird properties. This put FLT squarely
into a well-studied area of elliptic curves over Q and eventually lead to Wiles’
proof.13.1

Exercise 1. Prove (13.2).

Exercise 2. Prove that θ(z) has zeros of first order at L = Z + Zτ by

integrating θ′(z)
θ(z) along the boundary of a fundamental parallelogram of L.

Exercise 3. Prove that the function

−i
∑
n∈Z

(−1)neπi((n+ 1
2

)2τ+(2n+1)z)

is well-defined and holomorphic, and satisfies the transformation properties
(13.2).

14 Genus of complex algebraic curves and Riemann-
Hurwitz formula.

Let X be a compact connected Riemann surface. Since it is an oriented real
surface, it is homeomorphic to a sphere with g handles.

For g = 0, the only14.1 such surface is CP1. For g = 1 these are elliptic
curves. They form a one-parameter family (basically τ in L = Z + Zτ). A
general picture for g ≥ 2 is something like:

g = 3

A nontrivial theorem implies that X has a unique structure of a complex
algebraic curve. The difficult part is to show that there is a meromorphic
function X → CP1.

13.1 I was still in high school when Frey’s paper discussing the connection between FLT
and modularity conjecture appeared, but a mathematician I knew correctly predicted that
because of it FLT will now be proved sooner rather than later.
14.1 Uniqueness is not obvious.
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Let us discuss nonconstant holomorphic maps between Riemann surfaces.
Suppose we have one such map f : X → Y . For a point p ∈ X consider
q = f(p). If we consider local charts at p and q with coordinates z and t
respectively (so that z = 0 corresponds to p and t = 0 corresponds to q)
then the map is given by

t = f(z) = c1z + c2z
2 + . . .

and we will call the smallest k such that ck 6= 0 the multiplicity of f at p.
One can think of the multiplicity of f at p as the number of solutions to
f(z) = ε in the neighborhood of z = 0 for small ε, see Exercise 1. We also
note that there are only finitely many points in X where the multiplicity of
f is larger than one. Indeed, by compactness of X, we would otherwise have
an accumulation point which would lead to an accumulation point of the
zeros of the derivative, thus making f constant by analytic continuation.

Proposition 14.1. For q ∈ Y the number of preimage points p ∈ X,
counted with multiplicities ∑

p,f(p)=q

mp (14.1)

is finite and is independent of q. We call it the degree of the map f .

Proof. We will sketch the proof and the reader is welcome to fill in the
details.

Finiteness is obvious due to compactness of X, since an accumulation
point would imply that f is locally (and hence globally) constant. Now
suppose that p1, . . . , pk map to q ∈ Y with multiplicities m1, . . . ,mk. Let U
be a small neighborhood of q and consider connected components of the open
set f−1(U \ {q}). By compactness of X, every such connected component
must have one of xi in its closure, since we can find an accumulation point
of a sequence of points in X whose values approach q. We can pick a small
enough neighborhood U of q so that preimages of U near xi are close enough
to xi (in some metric) to be disjoint. This means that that for q in this U
all of the preimages are close to xi and by Exercise 1, the total number in
(14.1) is locally constant and hence constant.

Remark 14.2. The invariant deg f has an algebraic meaning. The fields
of meromorphic functions on X and Y are transcendence degree one field
extensions of C and the pullback under f induces a field extension

Mer(Y ) ⊆ Mer(X).
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Then this extension is finite and deg f is its degree, i.e. dimMer(Y ) Mer(X).
We do not prove this claim, but see Exercise 2.

Proposition 14.1 has an important corollary.

Corollary 14.3. For any nonzero meromorphic function f on X with ze-
ros/poles at points xi ∈ X of multiplicities mi, there holds

∑
imi = 0.

Proof. If f is a nonzero constant, then the sum is empty. Otherwise, we
can think of f as a nonconstant holomorphic map X → CP1. The sum of
positive mi is precisely the degree of f computed via preimages of 0 ∈ CP1

and the opposite of the sum of negative mi is the degree of f computed via
preimages of ∞ ∈ CP1.

Another proof of Corollary 14.3 can be obtained by integrating

1

2πi

∫
γ
d log f =

1

2πi

∫
γ

df

f

over a contour γ which is the boundary of a region U that contains all zeros
and poles of f . Now observe that γ is also the boundary (with the wrong
sign) of the complement of U which now has no zero or poles of f and thus
the integral is zero.

Corollary 14.3 implies that the map WeilDiv(X)→ Z which sends∑
k

mk[pk] 7→
∑
k

mk

induces a map Pic(X)→ Z, which is understandably called the degree map.
Isn’t it nice how there are terms “the degree of a map” and “the degree
map” which are quite different but sufficiently related to cause confusion?

Remark 14.4. The kernel of the degree map is called Pic0(X). For g = 0
we have Pic0(CP1) ∼= {0}. For g = 1 we saw that

Pic0(C/L) ∼= C/L.

More generally, for any compact Riemann surface X of genus g the group
Pic0(X) has a natural structure of an algebraic variety of dimension g. In
fact it is isomorphic to Cg/L for some lattice L ∼= Z2g. We do not prove
these statements.

We will now talk about a wonderful result known as the Riemann-Hurwitz
formula.
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Theorem 14.5. Let f : X → Y be a nonconstant holomorphic map of
compact connected Riemann surfaces. Then

2gX − 2 = (deg f)(2gY − 2) +
∑
p∈X

(mp − 1)

where mp is the multiplicity of f at p.

Proof. First of all,
∑

p is really just a finite sum since we only need to worry
about the points where mp > 1. We call points in X with mp > 1 the
ramification points of f . We pick a triangulation TY of Y in such a way that
all images of ramification points of X are among the vertices of TY . Then
we compare the triangulation TY with its preimage TX on X. Note that
each triangle ∆ in TY gives rise to deg f triangles in TX because the map
f−1(∆)→ ∆ is unramified, and the same is true for the edges. For vertices,
a vertex q ∈ Y of TY gives rise to∑

p,f(p)=q

1 =
∑

p,f(p)=q

mp −
∑

p,f(p)=q

(mp − 1) = deg f −
∑

p,f(p)=q

(mp − 1)

vertices in TX . We know that the Euler characteristics of X (resp. Y ) is the
number of triangles minus the number of edges plus the number of vertices
of TX (resp. TY ). It remains to combine the observation about the numbers
of triangles, edges and faces of TX and TY with well-known formulas for the
Euler characteristics χ(X) = 2− 2gX , χ(Y ) = 2− 2gY .

We will illustrate the Riemann-Hurwitz formula with a couple of exam-
ples.

• Let X be an elliptic curve and X → CP1 be the degree two map
ramified at 4 points (see Section 10). The Riemann-Hurwitz formula
reads

2 · 1− 2 = 2(2 · 0− 2) + 4× (2− 1).

• Let f : CP1 → CP1 be the map (x0 : x1) 7→ (xn0 : xn1 ) which is a
compactification of the map z 7→ zn. Then the degree of f is n and
there are two ramification points (0 : 1) and (1 : 0) with mp = n each.
The Riemann-Hurwitz formula reads

2 · 0− 2 = n(2 · 0− 2) + (n− 1) + (n− 1).
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For a dimension one complex manifold X, the holomorphic cotangent
bundle is the canonical bundle of X. If X is compact, it makes sense to ask
about the degree of the corresponding Weil divisor class KX , and Riemann-
Hurwitz formula allows us to compute it.

First, we note that in the case of X = CP1 the degree of KXCP1
is (−2).

Indeed, if we look at the differential form dz which has no zeros/poles in C,

it has a second order pole at infinity, because dz = −
(

1
z

)−2
d
(

1
z

)
near ∞.

Proposition 14.6. For a smooth compact Riemann surface X we have
degKX = 2gX − 2.

Proof. For any nonconstant map f : X → Y we have

degKX = (deg f) degKY +
∑
p∈X

(mp − 1). (14.2)

Indeed, if we take a meromorphic form on Y and compare its zeros and
poles with zeros and poles of its preimage, we will get additional (mp − 1)
for every ramification point, because dzk = kzk−1 dz.

Because every X has a holomorphic map f : X → CP1, we combine
Riemann-Hurwitz formula for f with (14.2) to get the desired result.

Let us now talk about automorphisms of compact Riemann surfaces.

For g(X) = 0, we have Aut(CP1) = PGL(2,C), given by the Möbius
transformations z 7→ az+b

cz+d .

For g(X) = 1, the automorphism group of X = C/L is a semidirect
product of C/L with a finite group, which could be Z/2Z, Z/4Z or Z/6Z.
The normal subgroup C/L is obtained by parallel transports ϕw : z 7→ z+w,
and the finite group comes from scalar multiplications that preserve the
lattice L. It is usually just {±1}, but it is {1, i,−1, i} if L = Z+Zi and it is

the group of sixth roots of 1 for the hexagonal lattice L = Z + Z(1
2 +

√
3

2 i).
We do not prove this, but it is not too hard to derive from what we know
about elliptic curves.

For g(X) ≥ 2, the automorphism group of X is always finite. One
way to prove it (we omit details) is to argue that X can be embedded
into a projective space in a way that automorphisms of X extend to the
ambient space. Then the automorphism group of X will be an algebraic
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subgroup of some PGL(n,C), so it will have a finite number of connected
components. Finally, the identity component must be just a point, otherwise
X would admit a nonzero holomorphic vector field, which would contradict
degKX > 0.

There is an even stronger statement with a surprisingly simple proof.
Theorem 14.7. Let X be a compact connected Riemann surface of genus
g ≥ 2. Then

|Aut(X)| ≤ 84(g − 1).

Proof. Let G be the automorphism group of X. One can show14.2 that the
set of G-orbits of X can be given the structure of a Riemann surface so that
X → Y = X/G is a degree |G| holomorphic map. An orbit of G with a
stabilizer of size n contributes |G|/n points of multiplicity n to the set of
ramification points of X → Y . Therefore, the Riemann-Hurwitz formula
gives

2g − 2 = |G|(2gY − 2) + |G|n1 − 1

n1
+ |G|n2 − 1

n2
+ . . .+ |G|nk − 1

nk

for some integers n1, . . . , nk that encode stabilizer sizes of the action of G.

If gY ≥ 2, then we have 2g− 2 ≥ |G| · 2, and the claim follows. If gY = 1,
then we have

2g − 2 = |G|
k∑
i=1

(1− 1

ni
).

Since the left-hand side is positive, the sum on the right is nonempty. Each
of the terms is at least |G|12 , so |G| ≤ 4(g − 1).

If gY = 0, we see that

2g − 2

|G|
= −2 +

k∑
i=1

(1− 1

ni
).

So it remains to observe that the smallest possible positive value of the right
hand side is 1

42 , achieved by

−2 +
1

2
+

2

3
+

6

7
,

see Exercise 3.
14.2 We will indeed show this later in Corollary 16.3, although a motivated reader can try

to do it now.
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Exercise 1. Prove that for a nonconstant holomorphic function f with
f(0) = 0 the number of solutions to f(0) = ε is equal, for all small nonzero
ε, to the smallest k such that the k-th derivative of f at z = 0 is nonzero.
Hint: Since f ′(z) is holomorphic, there is a neighborhood where f ′(z) has
no other zeros than perhaps z = 0. Thus any zeros of f(z)−ε will be simple.
Then you can count the their number in a circle |z| < α by

1

2πi

∮
|z|=α

f ′(z)

f(z)− ε
dz.

It is continuous in ε for ε close to 0 and is equal to 1
2πi

∮
|z|=α

f ′(z)
f(z) dz.

Exercise 2. Check the claim of Remark 14.2 for the map f : CP1 → CP1

that sends (x0 : x1) to (xn0 : xn1 ) for some positive integer n.

Exercise 3. Prove the last claim of the section. Hint: First argue
that for k ≥ 5 the right hand side is at least 1

2 . Then for k = 4 the right
hand is positive, so at least one of ni is 3 or more, which gives at least
−2 + 1

2 + 1
2 + 1

2 + 2
3 = 1

6 . If k ≤ 2, the right hand side is negative, so we
must have k = 3, etc.

15 Blowup of a point in C2. Birational equivalence
of algebraic varieties.

We are now switching gears to talk about phenomena that appear in complex
dimension two and higher. We start with a wonderful and initially puzzling
construction of the blowup of a point in C2.

Consider the subset S ⊂ C2 × CP1 defined by

S = {(x, y)× (u : v) ∈ C2 × CP1, such that xv − yu = 0}.

Proposition 15.1. The set S is a smooth complex algebraic surface.

Proof. Recall that CP1 is covered by two copies of C1, with points (uv : 1)
and (1 : v

u). This gives a covering of C2 × CP1 by two copies of C3. In the
first open set, when using z = u

v as the third coordinate, we get

S ∩ C3 = {(x, y, z) ∈ C3, such that x− yz = 0}
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which is isomorphic to C2 (we can solve for x). Similarly, in the second open
set we get

x
(v
u

)
− y

and we can solve for y. It is also clearly algebraic, for example because it is
given by a polynomial equation in C2 × CP2.

Whenever we have a subset in a product, it is natural to consider the
two projections of it. We will first look at the projection

S → CP1

that forgets (x, y). The fiber of S over (u : v) is the set of all (x, y) such
that xv = yu. Since (u, v) 6= 0, this is equivalent to (x, y) = λ(u, v) for some
λ ∈ C. We can see from this that S is the line bundle O(−1) over CP1.

The other projection
π : S → C2

is even more interesting. We get

π−1(a, b) =

{
{(a, b)× (a : b)}, if (a, b) 6= (0, 0);
{(0, 0)} × CP1, if (a, b) = (0, 0).

So we have drastically different fibers – a single point everywhere except
(0, 0) and a whole CP1 over (0, 0).

How should we visualize the blowup surface S? It is important to realize
that the naive picture on the left in the figure below

S

·(0, 0)C2

S

·(0, 0)C2

is wrong, because S would not be smooth. The correct way of thinking
about it is the picture on the right, where I also indicate that approaching
the origin along different directions gives different limiting points on S.
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Terminology: The map S → C2 is called the blowdown map or the
blowdown morphism, and S is called the blowup of C2 at (0, 0) because that
point is “blown up” to a CP1.15.1

The construction generalizes, of course. First of all, we can blow up a
point in Cn. Consider S ⊂ Cn × CPn−1 given by

S = {(x1, . . . , xn)× (y1 : . . . : yn), such that rk

(
x1 · · · xn
y1 · · · yn

)
= 1}.

Since not all yi are zero, the rank of the matrix is at least one, so S is cut
out by all 2× 2 minors of the matrix, i.e.

xiyj − xjyi = 0, 1 ≤ i < j ≤ n.

We claim that S is smooth. Indeed, suppose we are working in the chart of
CPn−1 where yn 6= 0. Then the rank condition is equivalent to

(x1, . . . , xn) = λ(
y1

yn
, . . . ,

yn−1

yn
, 1).

This means that λ = xn and then in this chart S is isomorphic to Cn with
coordinates

xn,
y1

yn
, . . . ,

yn−1

yn
.

Looking at the fibers of π : S → Cn, we see that

π−1(x1, . . . , xn) =

{
{(x1, . . . , xn)× (x1 : . . . : xn)}, if (x1, . . . , xn) 6= (0, . . . , 0),
{(0, . . . , 0)} × CPn−1, if (x1, . . . , xn) = (0, . . . , 0),

so the point (0, . . . , 0) ∈ Cn is blown up to CPn−1.

Remark 15.2. In general, it is possible to blow up a smooth subvariety Z
in a smooth variety X to get a blowdown morphism

π : Bl(Z ⊂ X)→ X

with the following properties.

• Bl(Z ⊂ X) is a smooth algebraic variety.

• Fibers of π over points in X \Z are points, i.e. π induces an isomor-
phism π−1(X \ Z)→ X \ Z.

15.1 Algebraic geometers waiting for their flight in the airport should refrain from dis-
cussing blowing up the plane at any number of points.
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• The morphism π−1Z → Z can be naturally identified with the map
PN(Z ⊂ X) → Z. Here N(Z ⊂ X) is the normal bundle15.2 to Z in
X and PW means the space of lines in the fibers of a vector bundle
W .

In other words, a subvariety Z gets blown up to the projectivization of its
normal bundle.

Even more generally, one can blow up arbitrary (i.e. singular) subvari-
eties of arbitrary varieties, but then there is no guarantee that the result is
smooth. In fact, it usually isn’t.

The blowup construction inspires the concept of birational equivalence
of algebraic varieties.

Definition 15.3. We call complex algebraic varieties X and Y birationally
equivalent, if their fields of rational functions are isomorphic as field exten-
sions of C.

Remark 15.4. An equivalent, more geometric, definition is that X and Y
are birational if and only if there exist Zariski open subsets U ⊆ X and
V ⊆ Y with U isomorphic to V as a complex algebraic variety. We also
call a morphism of algebraic varieties X → Y a birational morphism if it
induces an isomorphism of Zariski open subsets.

The second definition makes it clear that blowups (and blowdowns) do
not change the birational equivalence class. Study of birational equivalence
is known as birational geometry and is a big active area of Algebraic Geom-
etry, with multiple Fields medals awarded for it (Hironaka, Mori, Birkar). A
major part of birational geometry is the so-called Minimal Model Program
which aims to find a “nice” representative in each birational class. Some
singular varieties naturally occur in the Minimal Model Program.

I will state some accessible results of birational geometry, without proof.

• For every, possibly singular, complex algebraic variety X there exists
a smooth complex algebraic variety Y with a birational morphism
Y → X (Hironaka). This also holds over other fields of characteristic
zero, but is a very famous open problem in positive characteristics!

• dim = 1. Two smooth complex projective algebraic varieties X and
Y of dimension one are birational to each other if and only if they are

15.2 A fiber of this bundle at a point z ∈ Z is the quotient of the tangent space to X at
z by the tangent space to Z at z.
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isomorphic.

• dim = 2. Two smooth complex projective algebraic varieties X and
Y of dimension two are birational to each other if and only if they are
connected by a sequence of blowups of points followed by a sequence
of blowdowns, as indicated below.

X ← · · · ← Z → · · · → Y (15.1)

• dim = any. (Weak Factorization Theorem, by Abramovich, Karu,
Matsuki, W lodarczyk, see [1]) Two smooth complex projective alge-
braic varieties X and Y of any dimension are birational to each other
if and only if they are connected by a sequence of blowups and blow-
downs of smooth subvarieties as indicated below

X = X0 L9999K X1 L9999K · · · L9999K Xn−1 L9999K Xn = Y

where each L9999K is either a blowup or a blowdown morphism.15.3 It is
an open problem, even in dimension 3, whether the weak factorization
statement can always be upgraded to strong factorization, as in (15.1).

When one has a birational morphism π : X → Y , one can talk about the
exceptional locus Exc of π, which are the points x ∈ X where π is not an
isomorphism in any neighborhood of x. One is also interested in the image
π(Exc) in Y . If Z is any closed subset of Y which is not contained in π(Exc)
then the proper preimage of Z is defined as the closure

π−1
(
C \ (C ∩ π(Exc))

)
. (15.2)

This construction could be used to desingularize algebraic varieties by look-
ing at their proper preimages in carefully chosen blowups of some ambient
varieties.

Exercise 1. Check that the blowup S of Cn at the origin can be identified
with the line bundle O(−1)→ CPn−1.

Exercise 2. Let W be the subset of CP2 ×CP2 given by the conditions
that the points (x0 : x1 : x2)× (y0 : y1 : y2) satisfy

x0y0 = x1y1 = x2y2.

15.3 The precise statement is stronger but a bit more technical.
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Prove that W is a smooth surface. Verify that the projection maps W →
CP2 are birational and find the image of the exceptional locus (i.e. points
in CP2 with more than one preimage point). Remark: W is the closure of
the graph of the Cremona transformation (x0 : x1 : x2) 7→ ( 1

x0
: 1
x1

: 1
x2

).

Exercise 3. Let x2 − y3 = 0 be a singular curve on C2. Compute its
proper preimage (15.2) on the blowup S of C2 at (0, 0) and verify that it is
a smooth curve. Hint: Work in the coordinate charts on S.

16 Finite group actions on affine algebraic vari-
eties and complex manifolds. Subgroups of
SL2(C).

Let X ⊆ Cn be an affine complex algebraic variety. Suppose that a finite
group G acts on X, i.e.

G ⊆ AutC−alg(C[x1, . . . , xn]/I)

where I is the defining ideal of X. What can we say about the set of G-orbits
X/G? The following beautiful result goes back to at least Hilbert.

Theorem 16.1. The set X/G has a natural structure of an affine algebraic
variety. More precisely, the subring of G-invariant elements

(C[x1, . . . , xn]/I)G

is a finitely generated C-algebra, and its maximal ideals are in a natural
bijection with G-orbits on X.

Proof. Consider the elements yik = gi(xk) for all gi ∈ G and all 1 ≤ k ≤ n.
We can use this set of generators to write X as an algebraic subvariety
of Cn|G|, so that the action of G comes from a permutation action on the
coordinates of Cn. Then we have

(C[x1, . . . , xn]/I)G ∼= (C[y1, . . . , yl]/J)G ∼= C[y1, . . . , yl]
G/JG.

In the second isomorphism we used the fact that every element r of the
invariant ring (C[y1, . . . , yl]/J)G can be lifted to an element r̂ of C[y1, . . . , yl]
and then

1

|G|
∑
g∈G

g(r̂) = rmod J.
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Thus, to prove that (C[x1, . . . , xn]/I)G is a finitely generated C-algebra, it
suffices to prove it for C[y1, . . . , yl]

G, with the permutation action of G. We
actually don’t care too much that the action is a permutation action, but
we will use a weaker statement that the action of G on A = C[y1, . . . , yl]
preserves the natural grading on A by the total degree in yi.

Consider the ideal AAG+ ⊂ A which is generated by all homogeneous
elements of AG of positive degree. Since A is Noetherian, we can find a
finite set of generators f1, . . . , fk of AAG+, and we can even assume that all
fi are G-invariant homogeneous elements of A. We will now prove that fi
generate the ring AG as a C-algebra, by induction on degree.

In degree zero, we have A0 = AG0 = C, and there is nothing to prove.
Suppose we have proved that every homogeneous element of AG of degree at
most d can be written as a polynomial in f1, . . . , fk with constant coefficients.
Then for a homogeneous element f ∈ AG of degree d + 1 we use f ∈ AAG+
to write

f =
k∑
i=1

aifi

where ai are some elements of A of degree d + 1 − deg fi. We will now use
the averaging trick

f =
1

|G|
∑
g∈G

g(f) =
1

|G|

k∑
i=1

∑
g∈G

g(aifi) =
1

|G|

k∑
i=1

∑
g∈G

g(ai)fi

=

k∑
i=1

fi

 1

|G|
∑
g∈G

g(ai)

 =

k∑
i=1

fihi

where hi are G-invariant elements of degree d + 1 − deg fi. By induction
assumption, hi can be written as polynomials in f1, . . . , fk, therefore so can
be f .

Now that we have established that (C[x1, . . . , xn]/I)G is finitely gen-
erated, let us prove the bijection between its maximal ideals and the set
of orbits of G-action on the set of maximal ideals of C[x1, . . . , xn]/I.16.1

In one direction, to any maximal ideal m ⊂ R we associate the ideal

16.1 Recall that points in X correspond to maximal ideals in R = C[x1, . . . , xn]/I by
Hilbert’s Nullestellensatz.
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mG = m∩RG ⊂ RG. The ideal mG is maximal because for any x ∈ RG\mG

there exists y ∈ R such that xy = 1 modm. Then the element∏
g∈G

(1− g(xy)) =
∏
g∈G

(1− xg(y)) = 1− xŷ

(with G-invariant ŷ) lies in mG, which shows that xmodmG is invertible.
It is clear that different m in the same G-orbit give the same mG.

In the other direction, for a maximum ideal I ⊂ RG consider the ideal
RI that it generates in R. If RI contains 1 then there holds

1 =
∑
i

rixk

with xk ∈ I. Averaging gives 1 =
∑

i

(
1
|G|ri

)
xk ∈ I, contradiction. There-

fore, RI is contained in some maximal ideal m. It is clear that mG contains
I and is therefore equal to it, since I is maximal.

It now suffices to show that if m1 and m2 satisfy mG
1 = mG

2 , then m1

and m2 are in the same G-orbit. Consider I1 =
⋂
g∈G g(m1) and I2 =⋂

g∈G g(m2). If I1 + I2 were contained in a maximum ideal m, we would
have

m ⊇
⋂
g∈G

g(m1), m ⊇
⋂
g∈G

g(m2).

If m is not equal to any g(m1), then there are elements xg ∈ g(m1), xg 6∈ m,
and their product is in

⋂
g∈G g(m1) but not in m. Similarly, m must be equal

to one of g(m2), and this is impossible, since m1 and m2 are in different g-
orbits. Therefore, I1 + I2 = R and16.2

1 = a1 + a2, ai ∈ Ii.

Moreover, since Ii are G-invariant, when we average over G, we may as-
sume that ai are G-invariant. However, this means that ai ∈ mG

i , which
contradicts 1 6∈ mG

1 = mG
2 .

Remark 16.2. The invariant rings are also finitely generated when the
group G is a linear reductive group. However, they don’t have to be finitely
generated in the non-reductive case, see a famous counterexample to the
Hilbert’s fourteenth problem given by Nagata [25].

16.2 You have been warned.
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We will now discuss finite group actions on smooth complex manifolds.
Suppose a finite group G fixes a point p ∈ X. Then locally we have a
surjective map of G-representations

Hol0(p)
d→ (TX)∨p → 0

where Hol0(p) denotes the infinite-dimensional space of holomorphic func-
tions near p which are zero at p. This surjection has a G-invariant splitting.
To see this, a person nervous around infinite-dimensional vector spaces, can
lift a basis of (TX)∨p , look at the span of the G-translates of it and thus
reduce the problem to that of surjective finite-dimensional representations
of G. The G-invariant splitting then endows X near p with analytic coordi-
nates on which G acts linearly.

Corollary 16.3. In dimension one, all actions that fix a point p locally
analytically look like z 7→ αz, αn = 1, and the quotient is given by z 7→
zn = w.

Proof. Locally near p, we have an action of GL(1,C) = C∗, and all finite
subgroups of C∗ are given by groups of n-th roots of 1.

Corollary 16.4. For any finite group G of automorphisms of a complex
manifold X, the fixed locus XG is a disjoint union of complex submanifolds
of X.

Proof. Since the action is locally linear, it suffices to look at G ⊆ GL(n,C)
acting on X = Cn. Then XG is the linear subspace (Cn)G.

We will now focus on dimension two, and more precisely on the action of
finite subgroups G ⊂ SL(2,C) on C2. (We could have considered GL(2,C)
but it is more complicated.)

We first remark that any such G can be conjugated to lie inside the
unitary group SU(2). Indeed, G ⊂ SU(2) iff G fixes the standard Hermitean
on C2. We can take a positive definite Hermitean form on C2 and average
it over G to prove that G preserves some positive definite Hermitean form.
Since all such forms can be written as the standard form in some basis, this
change of basis makes a conjugate of G unitary.16.3 We put a matrix version
of this statement in Exercise 2.

16.3 This is a particular case of the Weyl’s unitarian trick.
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Recall that

SU(2) =

{(
a −b̄
b ā

)
, |a|2 + |b2| = 1

}
is a real 3-sphere. We can also think of it as the length one quaternions
γ ∈ H acting on H ∼= C2 by left multiplication γ : w 7→ γw.

Now consider the conjugation action

w 7→ γwγ−1

of SU(2) on H. It preserves the trace zero part of H (see Exercise 3) and
the norm

|w|2 = ww̄

on it. This gives a group homomorphism SU(2) → SO(3,R), whose kernel
is {±1}. Finite subgroups of SO(3,R) are classically known. They include
two infinite series (rotation symmetries of a regular pyramid and a regu-
lar bipyramid) as well as rotational symmetries of the regular tetrahedron,
cube/octahedron, and icosahedron/dodecahedron. This allows one to clas-
sify all finite subgroups G ⊂ SL(2,C).

In the future sections we will study in detail the singular quotients C2/G
for these groups G and their resolutions of singularities.

Exercise 1 (Molien series.) Let V be a complex finite-dimensional
representation of a finite group G. It induces a grading-preserving action of
G on Sym∗(V ) ∼= C[x1, . . . , xn]. Prove that the Hilbert series of the ring of
invariants Sym∗(V )G can be computed by

∞∑
d=0

dimC

(
Symd(V )

)G
td =

1

|G|
∑
g∈G

n∏
i=1

1

1− λg,it
=

1

|G|
∑
g∈G

det(1− tg)−1

where λg,1, . . . , λg,n are eigenvalues of g on V . Hint: For a finite-dimensional
G-representation W we have dimCW

G = 1
|G|
∑

g∈G Tr(g,W ). Then use the

result that all finite order elements in GL(V ) are diagonilizable.

Exercise 2. Let M be a Hermitean form on Cn given by 〈v, w〉 = w̄TMv.
Prove that an endomorphism

g : v → Av
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satisfies 〈Av,Aw〉 = 〈v, w〉 for all v and w if and only if ĀTMA = M . Prove
that if for some invertible matrix S we have M = S̄TS, then SAS−1 is a
unitary matrix.

Exercise 3. Prove that the conjugation action of quaternions preserves
the subspace Ri + Rj + Rk and the norm on it.

17 Resolutions of An and D4 singularities.

Let us now look at some specific examples of finite subgroups G of SL(2,C)
and the corresponding quotients C2/G.

The first series of examples comes from the action of the cyclic group of
order n ≥ 2 which necessarily17.1 looks like

G =< g >, g(x, y) = (ξx, ξ−1y) (17.1)

where ξ = e2πi/n. As a consequence of the definition, the action17.2 of the
generator g on the monomial xayb is

g(xayb) = ξa−bxayb

which implies that the invariant ring C[x, y]G is the linear span of monomials
xayb with the property a = bmodn. Some prominent examples of such
monomials are u = xn, v = yn and w = xy. We claim that every G-
invariant monomial xayb can be written as a product of these three. Indeed,
we can use u and v to reduce to the case a, b < n, and then we must have
a = b. It is also clear that u, v, w satisfy

uv − wn = 0, (17.2)

so the ring of invariants C[x, y]G is isomorphic to C[u, v, w]/(uv − wn), and
the quotient C2/G is a surface in C3 given by the equation (17.2). By
looking at partial derivatives, we see that the only singular point of this
surface occurs at the origin (0, 0, 0). It is known as the An−1 singularity,
and we will soon see why.

17.1 Exercise 1.
17.2 There is an evergreen issue of the action on points versus the action on functions.

We consider the action on the ring C[x, y].
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We will first look in detail at the A1 singularity given by

uv − w2 = 0 (17.3)

This is the simplest hypersurface singularity in complex dimension two, in
the following sense. If we have a function f(u, v, w) with f(0, 0, 0) = 0, we
can consider its Taylor series

f(u, v, w) = 0 + linear + quadratic + higher order.

If the linear term is nonzero, then f(u, v, w) = 0 is smooth at (0, 0, 0). If
the the linear term is zero, then we can ask about the quadratic term. If
the rank of the corresponding form is the maximum possible 3, then we get
an A1 singularity.

We will now resolve the surface (17.3) by blowing up the ambient C3 at
(0, 0, 0) and looking at the proper preimage of the surface uv = w2. Here
is the intuitive picture of what will happen, where we indicate in blue the
preimage of the singular point.

•

{uv = w2} ⊂ C3 S̃ ⊂ C̃3

Let us see this with all the gory details, in the coordinate charts. Recall
that the blowup C̃3 is a submanifold of C3 × CP2, given by {(u, v, w), (u1 :
v1 : w1)} such that there exists λ with (u, v, w) = λ(u1, v1, w1). As a result,
C̃3 is covered by three open charts, each one isomorphic to C3.

In the first open chart w1 6= 0, we have C3 with coordinates u
w ,

v
w , w and

the map to the original C3 is given by

(u, v, w) = (w
( u
w

)
, w
( v
w

)
, w). (17.4)

Remark 17.1. You may be concerned with such a bizarre notation for
the coordinates. Shouldn’t they be variables? Yes, of course. Let’s say
that we have C3 with coordinates t1, t2, t3 which maps to the original C3 by
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(t1, t2, t3) 7→ (u, v, w) = (t1t3, t2t3, t3). But then we think about what the co-
ordinate functions ti look like as rational functions in u, v, w and we recover
(17.4). At which point we forget about ti-s and accept a somewhat weird
notation. It does have advantages of being easily able to write the transi-
tion functions, although one has to be careful figuring out which subsets in
the three open charts are glued together. Fortunately, we will not worry too
much about it.

What is the preimage of S = {uv−w2 = 0} in the chart with coordinates
u
w ,

v
w , w? We rewrite the equation of S as

0 =
( u
w

)
w
( v
w

)
w − w2 = w2

(( u
w

)( v
w

)
− 1
)

and see that the preimage has two components: w = 0 and
(
u
w

) (
v
w

)
−1 = 0.

The first component is the preimage of (u, v, w) = 0, a.k.a. the exceptional
divisor, and the second component is the proper preimage of S. Or, more
precisely, these are the intersections of the exceptional divisor and the proper
preimage of S with this coordinate chart. Observe now that the proper
preimage of S is smooth in this chart.

Let us now look at the coordinate chart with coordinates u, vu ,
w
u . We

similarly get

0 = u2
(v
u

)
− u2

(w
u

)2
= u2

((v
u

)
−
(w
u

)2
)

and again we see that the proper preimage 0 =
(
v
u

)
−
(
w
u

)2
is smooth.

Obviously the v1 6= 0 chart is handled similarly.

We thus see that the proper preimage S̃ of S is smooth. It is also in-
structive to look at the fibers of S̃ → S. Outside of (0, 0, 0), the fibers are
of course points. The preimage of (0, 0, 0) is a subvariety of the exceptional
divisor, given by (u1 : v1 : w1) ∈ CP2 with u1v1 − w2

1 = 0, so it is a CP1.
For example, in the coordinate chart w1 6= 0, we have u

w = u1
w1
, v
w = v1

w1
so

0 =
(
u
w

) (
v
w

)
− 1 matches u1v1 − w2

1 = 0 in the appropriate chart on CP2.

Now let us look at the An−1 case, i.e.

S = {uv − wn = 0}.

As before, we blow up C3 and see what happens on the three coordinate
charts, two of which are similar due to u↔ v symmetry. On the chart with
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coordinates u
w ,

v
w , w we get

uv − wn = w2
(( u

w

)( v
w

)
− wn−2

)
so we may still have a singular point at the origin, but the value of n has
decreased by 2. Also note that the intersection of the proper preimage of S
with the exceptional divisor is given in this chart by

w = 0,
( u
w

)( v
w

)
− wn−2 = 0, (17.5)

so we get two lines w = u
w = 0 and w = v

w = 0. In the other two charts
the proper preimage is smooth (Exercise 2). They also compactify the lines
(17.5) from C to CP1. In short, we get a map S̃ → S with the preimage of
(0, 0, 0) being a union of two CP1-s, which intersect as coordinate lines at
an An−3 singularity, where A0 is by definition smooth.

•
An−1

S
•
An−3

S̃

We repeat the process. Each time, the power n decreases by 2 and two
new CP1-s spring out. A paranoid reader can verify that under the blowup
the previous CP1-s separate and two new lines intersect them transversely.
The last step is either unnecessary (if n is odd, and we reduce to uv = w)
or we only have one CP1 (if n is even and we reduce to A1-singularity). In
both cases we end up with a resolution of singularities S̃ → S such that the
preimage of the singular point is a chain of (n− 1) transversal CP1-s.

· · ·

CP1-s as lines

· · ·

CP1-s as spheres

Neither of the above pictures is entirely correct, since the Riemann spheres
intersect transversely. At any rate, we will consider the dual graph that
encodes the components of the exceptional locus of S̃ → S as vertices and
their intersections as edges. It is

◦ −− ◦ −− · · · −− ◦ −− ◦
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with n− 1 vertices, which is the An−1 Dynkin diagram.17.3

Now let us look at the next case. Here we have a subgroup G of SL(2,C)
generated by

(x, y) 7→ (ξx, ξ−1y), (x, y) 7→ (−y, x). (17.6)

If we apply the second operation twice, we get (x, y) 7→ (−x,−y), so we
might as well assume that ξ is the primitive (2n)-th root of 1.

Let us first compute the ring of invariants. The cyclic subgroup is normal,
so we will first take the quotient by that to get u = x2n, v = y2n, w = xy
with the ring

C[u, v, w]/(uv − w2n).

The symmetry (x, y) 7→ (−y, x) now becomes the involution (u, v, w) 7→
(v, u,−w). We can take the invariants first and then the quotient. The
action of this involution on C3 has positive eigenspace u + v and the A1-
type action on u− v and w, so the ring of invariants is generated by

t1 = u+ v, t2 = (u− v)2, t3 = w2, t4 = (u− v)w

with relations t2t3 = t24. We then have

C[x, y]G ∼= C[t1, . . . , t4]/(t2t3 − t24,
1

4
(t21 − t2)− tn3 )

∼= C[t1, t3, t4]/((t21 − 4tn3 )t3 − t24).

We rescale and rename the variables to get this into the standard form of

{u2 + wv2 + wn+1 = 0} ⊂ C3

called the Dn+2 singularity. Note that the extra w in the second term makes
it different from the An singularities.

Looking at the group generators or the equation of the quotient, we see
that n = 1 case simply gives A3 singularity, see Exercise 3. We will now
consider the simplest new case n = 2, i.e. the D4 singularity

u2 + wv2 + w3 = 0.

17.3 There is, of course, more to this notation. Appropriately understood intersection
pairing matrix of the components is up to the sign the Cartan matrix of An−1. We will
not try to define it now, but will comment on it in Section 19.
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It is easy to see that the only singular point occurs at (0, 0, 0). This is
also apparent from the quotient description, since nonidentity diagonalizable
elements of SL(2,C) can not have eigenvalue 1 and thus act freely away from
the origin. Now we blow up C3 at (0, 0, 0) and see what happens.

In the open chart with coordinates (z1, z2, z3) = (uv , v,
w
v ) we get17.4

0 = u2 + wv2 + w3 = z2
1z

2
2 + z3

2z3 + z3
2z

3
3 = z2

2(z2
1 + z2z3 + z2z

3
3)

and the proper preimage is given by 0 = z2
1 + z2z3 + z2z

3
3 . Vanishing of

partial derivatives gives

z1 = 0, z3 + z3
3 = 0, z2(1 + 3z2

3) = 0,

which gives three singular points (0, 0, 0), (0, i, 0), (0,−i, 0). Local analysis of
these points show that all three are of the type A1. We skip the calculations
for the two other charts, but we claim that we do not see any new singular
points. So the D4 singularity blows up to a CP1 with three type A1 singular
points on it.

•
D4

S
•
A1

•
A1

•
A1

S̃

When we further blow up these three points, we obtain a resolution of sin-
gularities S̃ → S with four CP1-s in it which intersect transversally in the
D4 Dynkin diagram (one central Riemann sphere intersects three others).

◦ −− ◦ −− ◦
|
◦

Exercise 1. Prove that every cyclic subgroup of SL(2,C) can be conju-
gated to the one in (17.1).

Exercise 2. Verify that the proper preimage of uv − wn in the chart
with coordinates u, vu ,

w
u is smooth.

Exercise 3. Check that the D3 case is the same as the A3 case in two
ways, by looking at the group action, and by making a change of variables
in u2 + wv2 + w2 = 0.
17.4 So having raised a stink about using letters for the variables, we are now doing it.

Enjoy!
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18 More resolutions of ADE singularities.

Let us now discuss the general Dn+2 case

S = {u2 + wv2 + wn+1 = 0} ⊂ C3

for n > 2.

As always, we blow up the origin in C3. On the open chart with coordi-
nates u

v , v,
w
v we get

0 = v2

((u
v

)2
+ v

(w
v

)
+
(w
v

)n+1
vn−1

)
with the second factor giving the proper preimage of S. Let us find singular
points of x2 + yz + zn+1yn−1 = 0. We have to solve the equations18.1

2x = 0, z+(n−1)zn+1yn−2 = 0, y+(n+1)znyn−1 = 0, x2+yz+zn+1yn−1 = 0.

We can multiply the second equation by (n + 1)y and the third one by
(n− 1)z, subtract them and get yz = 0. Since n > 2, we use the second and
third equations to deduce that both y and z are 0. So the only singular point
in this chart is (0, 0, 0), which corresponds to (0 : 1 : 0) on the exceptional
CP2 of C̃3 → C3 (we are in the chart v1 6= 0). For n > 2, we see that the
singularity at this point is of type A1, because we can ignore higher degree
terms. The intersection with the exceptional locus v = 0 is given by u

v = 0,

i.e. we have the line (0 : ∗ : ∗) on the exceptional CP2 of C̃3 → C3.

Let us look at the u, vu ,
w
u chart. There, the proper preimage is given by

0 = 1 +
(w
u

)(v
u

)
u+

(w
u

)n+1
un−1

and the exceptional locus is u = 0. Therefore, this chart of S does not
intersect the exceptional locus and is automatically smooth (one can also
check it directly).

The last chart has coordinates u
w ,

v
w , w. There we get

0 =
( u
w

)2
w2 +

( v
w

)2
w3 + wn+1 = z2

(( u
w

)2
+ w

( v
w

)2
+ wn−1

)
.

18.1 Yes, algebraic geometry is about solving polynomial equations.
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Clearly, we have a Dn−2 singularity at the origin, which corresponds to the
point (0 : 0 : 1).

Combining the information from the three charts, we see that a single
blowup gives us a map from the proper preimage S̃ to S so that the excep-
tional locus is CP1 with two singular points on it. One of these points of
type A1 and the other is of type Dn−2. By resolving the A1 singularity, we
replace Dn by two transversal CP1-s with a Dn−2 point on one of them.

•
Dn

•
A1

•
Dn−2

•
Dn−2

When we repeat the process, skipping details, we eventually get to D4 or
D3 = A3 and the resulting dual graph is given by the Dn+2 Dynkin diagram.

◦ −− ◦ −− ◦ −− · · · −−◦
|
◦

As you may deduce from the title of the section, there are three more
cases to consider, which correspond to the remaining three Dynkin diagrams
E6, E7 and E8, so that cumulatively these singularities are referred to as
ADE surface singularities.18.2 The corresponding groups are Z/2Z central
extensions of the groups of rotational symmetries of the regular tetrahedron,
cube and dodecahedron, respectively.

We will not write down the group generators, but will list the equations
below.

E6 : u2 + v3 + w4 = 0
E7 : u2 + v3 + vw3 = 0
E8 : u2 + v3 + w5 = 0

There is another way of looking at the resolutions of Dn+2 singularities.
The group G given by (17.6) has a cyclic subgroup G1 = Z/2nZ. We can first
take the quotient of C2 by G1, then resolve the resulting A2n−1 singularity
to get a smooth surface S1, then take the quotient by G/G1

∼= Z/2Z to get a

18.2 They are also called du Val singularities, canonical singularities, simple surface sin-
gularities, Kleinian singularities, and rational double points. This should tell you how
ubiquitous these singularities are.
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singular surface S2 and then further resolve to get a resolution S3 of C2/G,
see the commutative diagram below.

C2 S1 S3

↘ ↙ ↘ ↙
C2/G1 S2

↘ ↙
C2/G

Specifically, we have the A2n−1 singularity given by

uv − w2n = 0

and the action of G/G1
∼= Z/2Z which switches u and v. The resolution S1

has a chain of (2n− 1) Riemann spheres

◦ −− ◦ −− · · · −− ◦ −− ◦

which intersect transversely, and the involution of G/G1 switches the op-
posite spheres. Because we have an odd number of spheres, this involution
will preserve the middle CP1. It acts by switching two intersection points
with two adjacent CP1-s. We can call these points 0 and ∞ and observe
that every such involution can be written in the form z 7→ 1

z , see Exercise
1. Then we have two fixed points z = ±1. Since these are isolated points,
the eigenvalues of the action on the tangent space must be (−1,−1), so the
quotient will have an A1 singularity there. Therefore, the image of the chain
of (2n−1) lines on S2 will be n lines, with the first line having two additional
A1 singularities on it. Blowing up these A1 singularities, we get S3 with the
(n+ 2) lines in Dn+2 configuration.

We can similarly get the E6 singularity as the quotient of the D4 singular-
ity by a Z/3Z action. Then if you resolve the D4 singularity to get a surface
with a D4 configurations of projective lines, the group can be seen rotating
the three “outside” lines while fixing the middle one. By Exercise 2, any
order three automorphism of CP1 can be written in the form z 7→ e2πi/3z,
so it will have two fixed points 0 and∞. It is then possible to compute that
the quotient will be the A2 singularity, so we get S1 → S with E6 singularity
replaced by two lines with two A2 singular points on one of them.

/(Z/3Z) •A2

•A2
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When we resolve them, we get the E6 diagram below, with the colors match-
ing the colors of the above picture.

◦ −− ◦ −− ◦ −− ◦ −− ◦
|
◦

Similarly, the E7 singularity is a Z/2Z quotient of the E6 singularity.18.3

After resolving the singularity, the action on the E7 configuration of lines
is by switching the opposing ends. So we get four lines, C1, C2, C3, C4,
connected in a chain, and there are three A1 singularities: one one C1, one
on the intersection of C1 and C2 and one elsewhere on C2.

/(Z/2Z)
•A1 •A1

•A1

When we resolve these A1 singularities, we get the E7 diagram

◦ −−◦ −−◦ −− ◦ −− ◦ −−◦
|
◦

with the matching colors.

Unfortunately, the group of symmetries of the regular dodecahedron is
not solvable, so one can not obtain the E8 resolution by this process. We
can however blow up the origin in C3 and look at the proper preimage of
the surface u2 + v3 + w5 = 0 in it. We get in the u

w ,
v
w , w coordinate chart

0 = w2

(( u
w

)2
+
( v
w

)3
w + w3

)
which is the E7 singularity. We see in Exercise 3 that the proper preimage
has no singularities in other coordinate charts. The intersection with the
special fiber is a line u

w = u = 0, and one can see, with some effort, that
after resolving that E7 singularity we get the E8 diagram.

◦ −− ◦ −− ◦ −− ◦ −− ◦ −− ◦ −− ◦
|
◦

18.3 The set of eight vertices of the cube naturally splits into two sets of four vertices of
a regular tetrahedron, and the group of rotational symmetries of the tetrahedron is an
index two subgroup of that of the cube.
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Exercise 1. Prove that every involution of CP1 that sends 0 to ∞ can
be written in the form z 7→ c

z for some nonzero constant c. Then argue that
by scaling z we can rewrite it as z 7→ 1

z .

Exercise 2. Prove that every order three automorphism of CP1 can be
written as z 7→ e2πi/3z in some coordinates. Hint: Consider the correspond-
ing element in PGL(2,C) and its eigenvalues (up to common scaling).

Exercise 3. Check that the proper preimage of u2 + v3 +w5 = 0 has no
singular points in the coordinate charts with coordinates u, vu ,

w
u and u

v , v,
w
v .

19 Overview of intersection theory. Surfaces.

In this section we will talk about intersection theory. Even for these notes,
this section is unusually hand-wavy, with many of the claims partially or
totally unsubstantiated. Sorry, not sorry!

Let X be a smooth complex algebraic variety or a complex manifold. We
can view it as an orientable real manifold and associate to it two collections
of abelian groups, namely its integral simplicial homology groups Hi(X,Z)
and cohomology groups H i(X,Z) for 0 ≤ i ≤ dimRX = 2 dimCX. All of
these are finitely generated for algebraic varieties X. Moreover, H∗(X,Z)
is an associative graded, super-commutative19.1 ring with identity with the
multiplication operation cup-product ∪. The homology H∗(X,Z) is a graded
module over H∗(X,Z). The groups H∗ and H∗ are also related by the
Universal Coefficient Theorem, but we will not use it in these notes.

The nicest case occurs when X is a smooth and compact (for example,
projective) algebraic variety. In this case we have the Poincaré duality

H i(X,Z)
natural∼= H2 dimCX−i(X,Z).

Under Poincaré duality, 1 ∈ H0(X,Z) corresponds to the class of [X]
in H2 dimCX(X,Z), but the more interesting statement is that the class
of the point in H0(X,Z) corresponds to a special element P.D.(point) in
Htop(X,Z) = H2 dimCX(X,Z). In fact, we have

Htop(X,Z) = ZP.D.(point),

19.1 Super-commutativity means that for a ∈ Hi(X,Z) and b ∈ Hj(X,Z) we have α∪β =
(−1)ijβ ∪ α ∈ Hi+j(X,Z).
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and this gives us a concept of the intersection number.

Definition 19.1. Let Y and Z be algebraic subvarieties of X, of comple-
mentary dimension, i.e.

dimC Y + dimC Z = dimCX.

Consider the product of Poincaré duals

P.D([Y ]) ∪ P.D([Z]) = αP.D.(point) ∈ Htop(X,Z).

The integer α is called the intersection number of Y and Z and will be
denoted by Y · Z.

Remark 19.2. If Y and Z intersect transversely at k points, then Y ·Z = k
(in particular, Y · Z = 0 if Y ∩ Z = ∅). More generally, if Y ∩ Z is a finite
set, then Y · Z is a sum of local contributions, each of which is positive.
However, the definition makes sense even if Y ∩ Z is positive-dimensional,
or even Y ⊆ Z! In these cases, we just know that Y · Z is integer but can
make no claims about the sign of it. Philosophically, we can deform Y as
a real cycle to some Y ′ with the same homology classes [Y ′] = [Y ] so that
Y ′ intersects Z transversely, and we add up (±1) at each intersection point,
depending on the orientations.

The simplest nontrivial example is provided by X = CP2. If Y and Z
are complex curves in X, we have dimC Y + dimC Z = dimCX, so their
intersection product makes sense. The cohomology groups of X are given
by

H1(X,Z) = H3(X,Z) = 0, H0(X,Z) ∼= H2(X,Z) ∼= H4(X,Z) ∼= Z

with the generators of the latter three groups given by 1, the Poincaré dual
of the class [l] of a line, and the Poincaré dual of the class of a point,
and we have P.D.[l] ∪ P.D.[l] = P.D.(point)19.2 The class of the curve Y
is (deg Y )[l], and therefore Y · Z = (deg Y )(degZ). This is essentially the
Bezout’s Theorem 4.3 that we discussed rigorously in Sections 4 and 5,
although to make the connection precise we would need to talk about the
intersection multiplicities in the non-transversal case.

Now let us consider the blowup of CP2 at one point. We get X → CP2

with E the exceptional divisor on X.

19.2 This is a very fancy way of saying that two lines in CP2 intersect transversely at a
point.
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X

·CP2

E

L′
L

We have the following curves of interest on X: E, L, L′. The curve E
was already discussed, the curve L is the preimage of a line in CP2 that
does not pass through the point we blew up and the curve L′ is the proper
preimage of line that does pass through a point of blowup.

The key observation is that L ∼ L′+E, in the sense that [L] = [L′] + [E]
in H2(X,Z). Indeed, more generally there is a map of Weil divisors to
H2(X,Z) which passes through the class group. Another way of saying the
same thing is that a divisor of a rational function is always homologically
trivial. And there is a rational function (the ratio of the equations of the
equations of the two lines) which has simple zeros at E and L′ and poles at
L.19.3 We also have

L2 = 1, L · E = 0, L′ · E = 1, L · L′ = 1 (19.1)

based on the transversal intersections of the corresponding curves. This
implies that

0 = L · E = (L′ + E) · E = L′ · E + E · E = 1 + E2,

so we get
E2 = −1.

What? This certainly looked weird to me the first time I saw it. How can a
curve intersect itself negatively?

Actually, there is no problem. This curve E can not be deformed holo-
morphically, but you can deform it as a real 2-cycle on X to some Ẽ which

19.3 In this particular case can think of the family of smooth preimages of lines in CP2

degenerating into a singular curve E ∪ L′.
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intersects E at one point transversely with the “wrong” orientation. In
general, for a smooth curve C on a smooth projective surface X the self-
intersection C2 is equal to the degree of the normal bundle to C in X, where
by the degree of a line bundle I mean the degree of the corresponding Weil
divisor class.

In a footnote to Section 17 we indicated that the trees of lines in the
resolutions of ADE singularities have an intersection matrix which is nega-
tive of the Cartan matrix of the corresponding Dynkin diagram. Since these
diagrams are simply-laced, this simply means checking that for each of these
lines E there holds E2 = −2. We will not do this in full generality but will
address the case of the resolution of A1 singularity. In this case, we have a
surface S in C3 given by uv−w2 = 0, and we blow up C3 at the origin. The
proper preimage X of S is then smooth and the map

π : X → S

contracts a single line E to the origin.

Remark 19.3. If you object to doing intersection theory on a non-compact
surface X, you are not alone. To avoid this issue, we will compactify C3 ⊂
CP3 and consider the closure of S in it, given by

uv − w2 = 0

in homogeneous coordinates (t : u : v : w) of C3. We end up adding a
smooth conic in the plane t = 0, and it is easy to see that there is still only
one singular point and the blowup of CP3 in it still induces a resolution of
singularities. We will still use S and X as our notations. Alternatively,
one can argue that all we are trying to do is to understand the degree of the
normal bundle of E in X, and this does not require any compactification.

Consider two lines C1 and C2 on S given by u = w = 0 and v = w = 0
respectively. Their proper preimages on X intersect E transversely at one
point each.

•
A1

S X
C1

C2
D E

C ′2 D

C ′1

We also see that the rational function w
t has divisor

[C ′1] + [E] + [C ′2]− [D]
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whereD is the preimage of the conic at infinity {uv−w2 = t = 0}. Therefore,
we have [E] = [D]− [C ′1]− [C ′2] in H2(X,Z) and

E2 = D · E − C1 · E − C2 · E = 0− 1− 1 = −2

since D ∩ E = ∅ and Ci intersect E transversely at a single point.

Remark 19.4. It is possible to do intersection theory purely algebraically,
over any field k, even if k is not algebraically closed or has positive char-
acteristics. One needs to replace the (even) homology groups H∗ with the
so-called Chow groups A∗(X). As a matter of fact, A∗(X) provide more
refined invariants, compared to H∗. A very good, but also quite advanced
reference for it is the Fulton’s book [14].

Exercise 1. Use (19.1) to check that on the blowup X of a point in CP2

there holds (L′)2 = 0. What is the geometric meaning of it?

Exercise 2. Let C be a smooth curve on a smooth projective surface
S and let X → S be the blowup of S at a point p ∈ S. Denote by C ′ the
proper preimage of C in X. Prove that (C ′)2 = C2 − 1. This generalizes
the example of Exercise 1.

Exercise 3. Let X be a blowup of CP2 in 5 points p1, . . . , p5 in general
position. Prove that the proper preimage of any line through two of these
points has self-intersection (−1). Prove that the proper preimage of the
unique conic that passes through all five points also has self-intersection
(−1).

20 Rational surfaces. Del Pezzo surfaces.

We will now discuss arguably the simplest class of complex algebraic sur-
faces, namely the rational surfaces.

Definition 20.1. A complex algebraic surface X is called rational if and
only if it is birational to CP2 or, equivalently, the field of rational functions
on X is isomorphic to the field of rational functions in two variables.

This definition makes sense in arbitrary dimension, to give us a notion
of a rational algebraic variety. In some sense, rational varieties are what
we would wish all varieties to be: their points, at least most of them, are
precisely encoded by free variables. In higher dimension, it is a highly non-
trivial problem to determine if a variety is rational, but in dimension two
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it is usually quite manageable due to the following theorem of Castelnuovo,
which we will not attempt to prove.

Theorem 20.2. Let X be a smooth projective complex algebraic surface.
Then X is rational if and only if the square of the canonical line bundle
K⊗2
X → X has no nonzero holomorphic sections.

As was mentioned before, every two projective algebraic surfaces which
are birational to each other are obtained by successive blowups of points and
blowdowns. Thus, it is natural to define minimal rational surfaces as smooth
projective rational surfaces which are not isomorphic to a blowup of any
other surface. Since blowdown decreases the rank of the second cohomology
group, one can not do them indefinitely, so every rational surface is obtained
by a repeated blowup of a minimal one.

Prominent examples of minimal rational surfaces are Hirzebruch surfaces.

Definition 20.3. Let n be a nonnegative integer and let W = O ⊕ O(−n)
be a rank two vector bundle over CP1.20.1 We define the Hirzebruch surface

Hn := PW

as the set of lines through the origin in the fibers of W .

Each of the two summands O and O(−n) of W gives a line in the fiber of
W and thus a point in the fiber of PW . As fibers vary, we get two smooth
curves in Hn which are sections of Hn → CP1 in the usual sense of the word.
We call these curves S0 and S−n. In addition, we will be interested in the
fiber F0 and F∞ over the two points of CP1.

F0 F∞

S0

S−n

•
0

•∞

20.1 A theorem due to Grothendieck states that any vector bundle over CP1 is a direct
sum of line bundles. This is a very peculiar property of CP1.
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It is easy to see (Exercise 2) that

Hn \ (S0 ∪ F0) ∼= C2. (20.1)

One can show that every Weil divisor on C2 can be given as a divisor of a
rational function. Therefore, the class group of Hn is generated by [S0] and
[F0]. Let us find their intersection numbers.

Proposition 20.4. The intersection pairings of S0 and F0 on Hn are given
by

F 2
0 = 0, F0S0 = 1, S2

0 = −n.

Proof. The rational function x0
x1

on CP1 gives a rational function on Hn with
divisor [F0]− [F∞]. We thus get

F 2
0 = F0F∞ = 0,

since F0 ∩ F∞ = ∅. The curves F0 and S0 intersect transversally at a single
point, thus F0S0 = 1.

The computation for S2
0 is a bit more subtle. We claim that there is a

rational function on Hn which has divisor

[S0]− [S−n] + n[F0]. (20.2)

This would imply that [S0] = [S−n]− n[F0] in Cl(Hn), so

S2
0 = S0S−n − nS0F0 = 0− n = −n.

To construct such rational function, we write O(−n) → CP1 in coordinate
charts as being glued from two copies of C× C→ C over the two charts C
on CP1 via

(t0, (1 :
x1

x0
)) ∼ ((

x0

x1
)nt1, (

x0

x1
: 1)).20.2

Then W → C is glued from two copies of C2 × C→ C via

(s0, t0, (1 :
x1

x0
)) ∼ (s1, (

x0

x1
)nt1, (

x0

x1
: 1)).

20.2 If you are like me and struggle with signs, one way to see that you should have n
and not (−n) in this formula is by noticing that section t0 = 1 in the first chart becomes
t1 = (x0

x1
)−n in the second chart and thus does not extend to a section on all of CP1. This

is consistent with O(−n) not having nonzero sections. If a different sign were chosen, we
would get O(n) which does have such sections.
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Then Hn = PW is glued from two copies of CP1 × C→ C via

((s0 : t0), (1 :
x1

x0
)) ∼ ((s1 : (

x0

x1
)nt1), (

x0

x1
: 1)).

The curve S0 is defined by t0 = 0 in the first chart and t1 = 0 in the second
chart. Similarly, S−n is s0 = 0 in the first chart and s1 = 0 in the second
chart. The curve F0 is the complement of the first chart and is defined by
x0
x1

= 0 in the second chart.

The rational function
t0
s0

=
t1
s1

(
x0

x1
)n

has divisor [S0] − [S−n] in the first chart and [S0] − [S−n] + n[F0] in the
second.

The following result, which we will not prove, describes all minimal ra-
tional surfaces.
Theorem 20.5. Minimal rational surfaces are either CP2 or Hirzebruch
surfaces Hn for n = 0 or n ≥ 2.

Remark 20.6. The Hirzebruch surface H0 is simply CP1×CP1. The reason
that the Hirzebruch surface H1 is not included in the list is that it is actually
isomorphic to the blowup of CP2 at one point. The Hirzebruch surface H2

is the resolution of the A1 singularity of the singular quadric x0x1 = x2
2 in

CP3.

Some of the most fascinating examples of rational surfaces are the so-
called del Pezzo surfaces. Recall (see Definition 7.1) that a line bundle
L→ X is called ample if global sections of some positive tensor power of it
define an embedding of X into a projective space.

Definition 20.7. A smooth projective surface X is called a del Pezzo sur-
face, if the anticanonical line bundle K∨X

∼= ∧2TX → X is ample.

The simplest example of a del Pezzo surface is CP2. The anticanonical
line bundle on CP2 is O(3), its sections are cubic polynomials in the ho-
mogeneous coordinates, and they define an embedding of CP2 into CP9, a
particular case of the Veronese embedding. So the anticanonical line bundle
is very ample. Similarly, the anticanonical line bundle on CP1×CP1 is very
ample.

It can be shown that all del Pezzo surfaces are either CP1 × CP1 or
blowups of at most 8 distinct points p1, . . . , pk on CP2, provided that these
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points are in a sufficiently general position (for example, three points can
not be collinear). An interesting feature of a del Pezzo surface is its set of
(−1)-curves, which are the smooth curves of genus zero that can be blown
down to get another del Pezzo surface. We will comment on these below.

• k = 1. Blowing up one point on CP2, we get the Hirzebruch surface
H1. It has a unique (−1)-curve, namely the exceptional curve of the
blowdown morphism.

• k = 2. When we blow up two points p1 and p2 on CP2, we get three
(−1)-curves: two exceptional curves E1 and E2 that blow down to
p1 and p2 respectively, and the proper preimage l of the line p1p2 ⊂
CP2. We can blow down l, and the resulting surface turns out to be
isomorphic to CP1×CP1. The reader can try to prove it now, or wait
until we talk about toric varieties in Section 29.

• k = 3. Since points can not be collinear, we might as well choose to
blow up (1 : 0 : 0), (0 : 1 : 0) and (0 : 0 : 1). There are now six
(−1)-curves in X, connected to each other like vertices in a hexagon.
They are three exceptional curves and three proper preimages of the
coordinate lines. In fact, we have seen this surface in Exercise 2 of
Section 15.

• k = 4. There is only one such surface, since every four points on CP2,
no three of which are collinear, can be moved to (1 : 0 : 0), (0 : 1 : 0),
(0 : 0 : 1) and (1 : 1 : 1) by the action of PGL(3,C). This surfaces has
ten (−1)-curves: 4 exceptional curves and 6 proper preimages of the
lines through two out of 4 points.

• k = 5. There is now a two-dimensional family of surfaces, which we
looked at in Exercise 3 of Section 19. There are 16 (−1)-curves: 5 ex-
ceptional curves of the blowup, 10 proper preimages of lines and one
proper preimage of the conic through p1, . . . , p5. Sections of the anti-
canonical line bundle on X can be identified with cubic polynomials
in the homogeneous coordinates of CP2 which are zero on p1, . . . , p5.
This is a five-dimensional space, and it gives an embedding of X into
CP4, so that the ideal of X is generated by two degree two equations.

• k = 6. This case is a bit more famous than the others. There are 27
(−1)-curves of X, which come from 6 exceptional curves, 15 proper
preimages of lines and 6 proper preimages of conics through 5 out
of six points we blow up. All such surfaces are embedded into CP3

by the sections of K∨X and the image is given by one cubic equation.
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The (−1)-curves become lines in CP3 in this embedding. Conversely,
every smooth cubic surface in CP3 is del Pezzo, has 27 lines on it,
and any collection of pairwise disjoint lines on it can be contracted to
get CP2. We do not prove these classical results, but we will see how
the expected number of lines can be deduced using calculations in the
cohomology ring of the Grassmannian of lines in Exercise 3 of Section
26.

• k = 7. In this case, the surface X always has an involution, so that
the quotient is CP2 and the map X → CP2 is ramified over a smooth
curve of degree 4. There are 56 (−1)-curves on X. In addition to the
7 exceptional curves, proper preimages of 21 lines through two of the
blowup points and 21 conics through five of the points, there are also
proper preimages of 7 cubic curves in CP2 which pass through 6 out
of seven points of the blowup and are singular at the 7-th point. The
anticanonical line bundle is not very ample, i.e. sections of K∨X do not
define an embedding.

• k = 8. There are 240 (−1)-curves. Specifically, there are 8 exceptional
curves, 28 and 56 proper preimages of lines and conics respectively
and 64 proper preimages of cubic curves which are singular at one of
the points and pass through six points of the blowup. Furthermore,
there are proper preimages of 56 degree four curves which are singular
at three points and pass through the remaining five points, and 28
degree five curves which are singular at six points and pass through
the remaining two. The anticanonical line bundle is not very ample.

Remark 20.8. Another interesting family of surfaces is obtained by blowing
up 9 points on CP2 which are the intersection points of two smooth cubic
curves f1 = 0 and f2 = 0. The resulting surface is not del Pezzo, but its
anticanonical line bundle defines a map to CP1. The generic fiber of this map
is an elliptic curve, and these surfaces are called rational elliptic surfaces.

Exercise 1. Prove that for any vector bundle W → X and a line bundle
L→ X we have

P(W ⊗ L) ∼= PW.

Conclude that the projectivization of O(a) ⊕ O(b) → CP1 is isomorphic to
the Hirzebruch surface H|a−b|.

Exercise 2. Show that the complement H \F0 is isomorphic to CP1×C.
Use it to prove that (20.1).
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Exercise 3. A (−1)-curve in a smooth surface X is, by definition, iso-
morphic to CP1 and satisfies E2 = −1. Use adjunction formula to prove
that it satisfies K ·E = −1 where K is the Weil divisor that corresponds to
the canonical line bundle KX → X.

21 Kodaira dimension and classification of alge-
braic surfaces.

We will now discuss a very important invariant of algebraic varieties known
as the Kodaira dimension.

Let X and Y be compact smooth n-dimensional algebraic varieties which
are birational to each other, i.e. they contain isomorphic Zariski closed
subsets X ⊇ UX ∼= UY ⊆ Y . Because Y is compact, there exists an open
subset V ⊆ X that contains UX such that

• codimC(X \ V ) ≥ 2.

• There is a birational holomorphic map µ : V → Y .

This is often phrased as “birational equivalences are isomorphisms away from
a set of codimension one and are morphisms away from a set of codimension
two”. We will not prove this statement,21.1 but will illustrate it by an
example.

The algebraic surface CP2 and its blowup at a point p are birational to
each other, because they contain isomorphic Zariski open subsets, namely
the complement of the point and its preimage. If we take Y to be the blowup
of CP2 and X to be CP2, then V = CP2 \ {p} maps to Y . On the other
hand, if we take X to be the blowup of CP2 and Y to be CP2, then we can
take V to be all of X, although the holomorphic map V → Y is no longer
an inclusion.

Now let w ∈ Γ(Y,ΛnTY ∨) be a global holomorphic n-form on Y . When
we pull it back to V we get µ∗w ∈ Γ(V,ΛnTX∨), a holomorphic n-form on V .
We now invoke a statement knowns as the Hartogs’ Lemma: a holomorphic
section of a line bundle defined outside of the locus of complex codimension

21.1 It is related to the valuative criterion of properness, [20].
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2 or higher can be uniquely extended to a holomorphic section.21.2 Thus,
our assumption of V implies that µ∗w can be extended to an element of
Γ(X,ΛnTX∨). This gives us a pullback-then-extension linear map

Γ(Y,ΛnTY ∨)→ Γ(X,ΛnTX∨).

Naturally, we also have the pullback-then-extension map in the other direc-
tion

Γ(X,ΛnTX∨)→ Γ(Y,ΛnTY ∨)

and these two maps are inverses of each other, because the compositions (in
the appropriate order) preserve the forms on UX and UY .

Recall that the line bundle ΛnTX∨ is called the canonical line bundle of
X and is denoted by KX . A similar argument works for any positive tensor
power21.3 of KX so we see that

Γ(X,K⊗mX )

is an invariant of birational equivalences between smooth compact algebraic
manifolds. Moreover, the graded ring

R =
⊕
m≥0

Γ(X,K⊗mX )

is a birational invariant. One of the great achievements of birational geom-
etry is the proof in 2010, by Birkar, Cascini, Hacon and McKernan [5, 6]
that R is finitely generated (over its degree zero part which is always C). I
believe this is still an open problem over the fields of positive characteristics,
and I am not willing to venture any guesses if it is true there or not.

Warning 21.1. For m < 0, the vector space

Γ(X,K⊗mX )

is not a birational invariant. The proof that works for m > 0 is not appli-
cable, because vector fields do not pull back. For instance, for m = −1,

dimC Γ(CP2,K∨CP2) = dimC Γ(CP2,O(3)) = 10

but for the blowup X of CP2 at a point p we get dimC Γ(X,K∨X) = 9 as
these correspond to homogeneous cubic polynomials in three variables that
are zero at p.

21.2 It is often stated for functions rather than sections of line bundles, but there is no
difference locally.
21.3 Just because we can’t integrate expressions like g(z) (dz1 ∧ · · · ∧ dzn)⊗m, it doesn’t

mean that they don’t make sense. They can also be pulled back for m ≥ 0.
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Kodaira dimension concerns the “size” of R. More precisely, R is always
an integral domain, and its quotient field is a field extension of C of finite
transcendence degree.

Definition 21.2. We define Kodaira dimension of X by

κ(X) =

{
tr.deg.(Q.F.(R))− 1, if R>0 6= 0.
−∞. if R>0 = 0.

Remark 21.3. Kodaira dimension of X is a birational invariant which
takes values in

{−∞, 0, 1, . . . ,dimCX}.

After the dimension, it is arguably the most important invariant of an alge-
braic variety. Occasionally, κ(X) = −∞ is denoted by κ(X) = −1, but the
−∞ notation is preferable, because it satisfies

κ(X × Y ) = κ(X) + κ(Y )

in the appropriate sense.

In dimCX = 1 case, birational equivalence of smooth compact Riemann
surfaces implies isomorphism, and Kodaira dimension separates all Riemann
surfaces into three classes that we have already seen in Section 14.

• κ(X) = −∞. This is the case of genus g = 0, and X ∼= CP1 is the only
example. The universal cover of X is CP1. The automorphism group
is PGL(2,C).

• κ(X) = 0. We have g = 1, X is an elliptic curve, the universal cover
is C. The automorphism group is one-dimensional.

• κ(X) = 1. Here g ≥ 2, the universal cover is the unit disc (equivalently,
upper half plane). The automorphism group is finite.

We will now talk about the next case, dimCX = 2. The situation is a
lot more complicated. We will make no attempts at proving anything.

First let’s talk about κ(X) = −∞. Examples include all of the rational
surfaces, such as CP2, CP1 × CP1, Hirzebruch and del Pezzo surfaces. In
addition, this class contains products CP1 × Y for a curve Y , and more
generally ruled surfaces (X → Y with generic fiber isomorphic to CP1).

The next case of κ(X) = 0 is arguably the most fascinating. In this case
either the canonical line bundle KX or some positive tensor power of it is
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trivial. Examples include abelian surfaces, so-called hyperelliptic surfaces,
K3 surfaces and Enriques surfaces.

Abelian surfaces are topologically equivalent to (S1)4 and are isomorphic
to C2/L for certain lattices L ∼= Z4. They form countably many three-
dimensional families inside of a four-dimensional family of complex manifolds
(see Exercise 1), most of which are not algebraic.

dim 4

· · ·
dim 3

You try drawing infinitely many
three− dimensional loci inside

a four− dimensional space!

Hyperelliptic (a.k.a. bielliptic) surfaces are quotients (E × F )/G of cer-
tain products of elliptic curves by certain finite group actions. There are
seven families of such surfaces.

K3 surfaces have been studied by many authors, but they were named as
such in 1958 by Weil, to honor Kummer, Kähler and Kodaira, as well as the
K2 mountain in the Himalayas. Similarly to the abelian surfaces, they form
countably many 19-dimensional families inside a 20-dimensional family of
complex surfaces. In what follows, I will describe some of these families and
give a (non-rigorous) count of the parameters.

• Consider the double cover X → CP2 ramified over a smooth de-
gree 6 curve f(x0, x1, x2) = 0 which roughly means looking at t2 =
f(x0, x1, x2) in some appropriate space, see Exercise 2.21.4 The pa-
rameter count goes as follows. We have a 28-dimensional space of
homogeneous polynomials of degree 6, which gives 27 parameters up
to scaling. Moreover, we should subtract the dimension of the auto-
morphism group of CP2, which is dim PGL(3,C) = 8. Thus, we get
27− 8 = 19.

• The next case is that of degree 4 hypersurfaces X in CP3 that one can
view as a direct generalization of cubic curves in CP2. Note that by

21.4 We do not explain why KX → X is trivial in this case.
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the adjunction formula of Proposition 9.7 we have

KX
∼= µ∗(KCP3 ⊗O(X)) ∼= µ∗(O(−4)⊗O(4)) = µ∗O

is trivial. The space of polynomials of degree 4 is of dimension 35 and
we get as before

35− 1− dim PGL(4,C) = 35− 1− 15 = 19.

• Now let us consider the surfaces X in CP4 whose homogeneous ideal is
generated by one quadratic and one cubic equation. We can think of X
as an intersection of a quadric Q and a cubic C in CP4. The canonical
class ofX is trivial by a repeated application of the adjunction formula,
first going from CP4 to C and then going from C to X. The space of
quadratic polynomials in 5 variables is of dimension 15, so we get a
dimension 14 parameter space of Q. The space of equations of C is of
dimension 35, but we need to not only account for the scaling (subtract
1) but also for adding any products of the equation of Q and a degree
one polynomial. And let’s not forget about the automorphisms of CP4.
All in all, we get

14 + (35− 1− 5)− dim PGL(5,C) = 14 + 29− 24 = 19.

Remark 21.4. We do list one more family in Exercise 3 and there are,
as I mentioned earlier, infinitely many families, but the description gets
more complicated further on. One really needs Hodge theory for the proper
treatment of K3 surfaces. What is remarkable, and not at all obvious, is
that all of the above are diffeomorphic to each other as real manifolds!

To finish the κ(X) = 0 case, Enriques surfaces are quotients of certain
special K3 surfaces by Z/2Z that acts without fixed points. They form a
single 10-parameter family.

In the case of κ(X) = 1, the surfaces in question have a structure of
elliptic fibration, i.e. there is a map X → Y , where Y is a curve, and most
fibers are smooth curves of genus 1. There is a detailed classification of what
kind of special fibers could occur, due to Kodaira.

The case of κ(X) = 2 is that of surfaces of general type. It includes in
particular products C1×C2 where both Ci are curves of genus at least two.
Other simple examples are smooth surfaces in CP3 of degree at least five.
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Overall, we are nowhere near classifying surfaces of general type, although
there are multiple very interesting constructions of some of them with small
Betti numbers. My hobby over the last eight years or so has been trying to
construct explicit equations of a very special type of such surfaces, known
as fake projective planes.21.5 For a review of related surfaces, I highly rec-
ommend [4].

Exercise 1. Count the parameters of rank 4 lattices in C2, up to linear
transformations of C2 to show that they form a four-dimensional family.

Exercise 2*. The weighted projective space WP(1, 1, 1, 3) is defined as
the quotient of C4 \ {(0, 0, 0, 0} with coordinates (x0, x1, x2, t) by the action
of C∗ given by (x0, x1, x2, t) 7→ (λx0, λx1, λx2, λ

3t). As a set, WP(1, 1, 1, 3)
can be covered by the charts Ui = {xi 6= 0} and Ut = {t 6= 0} which gives it
a structure of a (singular) algebraic variety. Prove that U0,1,2 are in natural
bijection to C3 and Ut is in bijection to the quotient of C3 by the group
Z/3Z that acts by scaling coordinates by the third roots of 1. Prove that
the surface

t2 = x6
0 + x6

1 + x6
2

is smooth and maps 2 : 1 to CP2, with ramification divisor given by

0 = x6
0 + x6

1 + x6
2.

Exercise 3. One more accessible example of K3 surfaces is that of
surfaces X in CP5 cut out by three quadratic equations. Do the rough
parameter count, taking into account that only the linear span of the three
equations matters. Hint: Count the ordered bases of the space of generators,
which overcounts the parameter space by dim GL(3,C) = 9. If you know the
formula for the dimensions of Grassmannians, that could be used as well.

22 Chern classes of vector bundles. Chern char-
acter. Euler sequence.

Let X be a smooth complex manifold and W → X be a rank r holomorphic
vector bundle. Then it is possible, although not easy, to construct the total

21.5 They have been classified as 100 group quotients of a two-dimensional ball by [8],
following [26], but this does not provide explicit equations.
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Chern class of W

c(W ) = 1 + c1(W ) + c2(W ) + . . .+ cr(W ) ∈ Heven(X,Z) =
⊕
i

H2i(X,Z)

where 1 ∈ H0(X,Z) and ci(W ) is an element of H i(X,Z). The individual
terms ci(W ) are called the i-th Chern classes of W .

The case of line bundles L → X is of particular interest. Here the
only nontrivial Chern class is c1(L). If L corresponds to the Weil divisor
D =

∑
i aiDi, the class c1(L) turns out to be the Poincaré dual of the

homology element [D] in H2 dimCX−2(X,Z). So in this sense we can think
of Chern classes as some kind of higher rank invariants that generalize the
correspondence between line bundles and Weil divisor classes.

Chern classes carry a number of properties, which we list below, obviously
without proof.

• ck(W ) = 0 for k > rkW .

• (Functoriality) For a morphism f : X → Y and vector bundle W → Y
there holds

ck(f
∗W ) = f∗(ck(W ))

for all k. On the left hand side we have the Chern class of the pullback
of the vector bundle, and on the right we have the cohomology pullback
H2k(Y,Z)→ H2k(X,Z) of the Chern class.

• For a short exact sequence of vector bundles22.1

0→W1 →W2 →W3 → 0

on X there holds
c(W2) = c(W1)c(W3).

As the corollary of the last statement, if a vector bundles W is a direct
sum of line bundles

W ∼= L1 ⊕ L2 ⊕ . . .⊕ Lr,

then
c(W ) = (1 + c1(L1))(1 + c1(L2)) · . . . · (1 + c1(Lr)).

22.1 This means we have maps of vector bundles that induce short exact sequences in each
fiber.
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Now I want to explain how one can work with Chern classes. A typical
problem might be the following. Suppose we have a rank 2 vector bundle
W with the total Chern class c(W ) = 1 + c1 + c2, and we want to compute
the Chern class of the third symmetric power Sym3(W ).

Because Sym3(C2) ∼= C4, the vector bundle Sym3(W ) has rank 4. Sup-
pose for a moment that W is a direct sum of line bundles

W ∼= L1 ⊕ L2,

in which case

Sym3(W ) ∼= L⊗3
1 ⊕ (L⊗2

1 ⊗ L2)⊕ (L1 ⊗ L⊗2
2 )⊕ L⊗3

2 .

If we denote c1(L1) = x1, c2(L2) = x2, then we have c1 = x1+x2 ∈ H2(X,Z)
and c2 = x1x2 ∈ H4(X,Z). Since tensor product of line bundles corresponds
to the addition of the corresponding Weil divisor classes, we get

c(Sym3(W )) = (1 + 3x1)(1 + 2x1 + x2)(1 + x1 + 2x2)(1 + 3x2).

On the right, we have a symmetric function in x1, x2, which we can write in
terms of its elementary symmetric polynomials c1 and c2 as

c(Sym3(W )) = 1+6c1+(11c2
1+10c2)+(6c3

1+30c1c2)+(18c2
1c2+9c2) (22.1)

The black magic known as the splitting principle then says that c(Sym3(W ))
is given by the formula (22.1) even if W is not isomorphic to a direct sum
of line bundles! This allows us to compute Chern classes of vector bundles
that are constructed from given vector bundles.

An important terminology convention is to write

c(W ) =
rkW∏
i=1

(1 + xi(W ))

and call xi(W ) the Chern roots of W . If W is a direct sum of line bundles,
then its Chern roots are just their first Chern classes. More generally, the
Chern roots themselves are not assigned a precise meaning, but their ele-
mentary symmetric functions are the Chern classes of W . As a consequence,
a degree k symmetric polynomial in the Chern roots of W is a polynomial
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in the Chern classes of W , and is an element of H2k(X,Z). A particular
case is that of the tangent bundle TX → X, where we write

c(TX) =

dimCX∏
i=1

(1 + xi)

and call xi the Chern roots of X.22.2

Let us now do an important example. We would like to compute the
total Chern class of the tangent bundle to CPn.

Proposition 22.1. There is a natural sequence of vector bundles on CPn

0→ O → O(1)⊕(n+1) → TCPn → 0

usually called the Euler sequence.

Proof. I will only sketch the proof. The key to this is the presentation

CPn = (Cn+1 \ {0})/C∗.

We can think of vector fields on CPn as C∗-equivariant vector fields on
Cn+1 \ {0} of “weight 1”, up to the vector field

∑n
i=0 xi

∂
∂xi

along the fibers
of the quotient map.

As a consequence of the Euler sequence, we get

c(TCPn) =
c(O(1))n+1

c(O)
=

(1 +H)n+1

1 + 0
= (1 +H)n+1

where H = c1(O(1)) is the standard generator of H2(CPn,Z). Note, how-
ever, that it would be wrong to claim that H, . . . ,H (n+1 times) are Chern
roots of TCPn, because that would give the wrong rank.

We will now discuss a very important way of packaging the Chern class
information, known as the Chern character.

Definition 22.2. Let W be a rank r vector bundle on X with

c(W ) =

r∏
i=1

(1 + yi)

22.2 I have also seen these more properly referred to as the Chern roots of the tangent
bundle to X. Perhaps this will become the common convention in the future.
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where yi are the Chern roots. Then we define the Chern character of W by

ch(W ) := ey1 + ey2 + · · ·+ eyr = r + (y1 + . . . yr) + (
1

2
y2

1 + . . .+
1

2
y2
r ) + · · ·

in Heven(X,Q). We have to use the coefficient ring Q because of the de-
nominators in the exponential. Note that the formal power series of ey can
be truncated to a polynomial, since H>2 dimCX(X,Q) = 0.

Remark 22.3. People these days plug everything into the exponential func-
tion! My personal favorite is eX , which is the disjoint union of properly
understood quotients of the products of n copies of a manifold X by the
symmetric group of permutations.

Remark 22.4. The standard notations ch(W ) and c(W ) are close enough
to be somewhat confusing at first reading, even though total Chern class and
Chern character have very different properties.

The following properties of the Chern character can be deduced from
those of the total Chern class and the splitting principle.

• The H0(X,Q) part of ch(W ) is always the rank of W .

• For a short exact sequence

0→W1 →W2 →W3 → 0

there holds ch(W2) = ch(W1) + ch(W3).

• For f : X → Y and vector bundles W on Y there holds ch(f∗(W )) =
f∗(ch(W )).

• ch(W1 ⊗W2) = ch(W1)ch(W2).

The last property is perhaps the most useful, it is much simpler than the
corresponding statement for the total Chern classes.

As a corollary, we can use the Euler sequence on CPn to get

ch(TCPn) = (n+ 1)eH − 1.

There is also some strange but important class called the Todd class of
X. It is defined as follows.

Definition 22.5. Let xi be the Chern roots of TX, i.e.

c(TX) = 1 + c1 + c2 + . . . =
∏
i

(1 + xi).
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Then

Td(X) =

dimCX∏
i=1

xi
1− e−xi

where we expand x
1−e−x as a formal power series in x. It can be explicitly

written as

Td(X) = 1 +
c1

2
+
c2

1 + c2

12
+
c1c2

24
+ · · · , (22.2)

see Exercise 3.

Exercise 1. Verify (22.1)

Exercise 2. Prove that the first Chern class c1(W ) of a vector bundle
W is the first Chern class of its top exterior power ΛrkWW .

Exercise 3. Prove that the coefficients of the Todd class of X can
be written as polynomials in the Chern classes of TX, without using the
dimension of X, and verify (22.2). Hint: By looking at

ln c(X) =
∑
i

ln(1 + xi),

we can write the sums
∑dimCX

i=1 xki as polynomials in cj . Then consider
ln Td(X).

23 Cohomology of vector bundles and Hirzebruch-
Riemann-Roch formula. Example: χ(CPn,O(k)).

Recall that for a vector bundle π : W → X on a smooth complex algebraic
variety, sections s of it are maps s : X →W such that π ◦ s = idX . Sections
of W have a natural structure of a complex vector space, which we (for now)
denote by Γ(X,W ).

Suppose that we have a short exact sequence

0→W1 →W2 →W3 → 0

of vectors bundles on X, which means that we have this short exact sequence
of vector spaces in each fiber. Any section of W1 induces a section of W2

and a section of W2 induces one of W3 and we have the following result.
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Proposition 23.1. There is a left exact sequence

0→ Γ(X,W1)→ Γ(X,W2)→ Γ(X,W3)

Proof. The fact that Γ(X,W1) → Γ(X,W2) is injective is obvious, since a
zero in a fiber of W2 is also a zero in a fiber of W1. For the exactness in
the middle, suppose that s : X → W is a section of W2 → X which maps
to the zero section of W3 → X. This means that for every x ∈ X the image
of s(x) in the fiber of W3 → X is zero. But this means that s(x) actually
lies in the fiber of W1 inside that of W2, and s is an image of a section s1 of
W1 → X.

As you may have guessed, there is generally no right exactness. In other
words, a surjective map of vector bundles

W2 →W3 → 0

may or may not induce a surjective map of the corresponding spaces of
sections. The issue here is that given a section s : X →W3, we may always
pick a lift to W2 at each fiber, but we may not be able to do it in a consistent
(say, holomorphic) fashion over all of X. We provide a specific example of
non-surjectivity below.

Let X = CPn. Consider the Euler sequence

0→ O → O(1)⊕n+1 → TX → 0.

We can dualize it to get

0→ (TX)∨ → O(−1)⊕n+1 → O → 0.

The line bundle O is the trivial bundle C ×X → X, whose global sections
are the holomorphic functions on X, which are constants. So Γ(X,O) ∼= C.
We claim that the line bundle O(−1) → CPn has only zero holomorphic
sections. One way of seeing it is that the coordinates x0, . . . , xn on CPn are
sections of O(1), so for any section s ∈ Γ(CPn,O(−1)) the tensor product
s⊗x0 is a section of O and is therefore a constant. Since it is zero at x0 = 0,
we see that it must be a zero constant. This is implies that s is zero for
x0 6= 0 and is thus zero everywhere by continuity.

It turns out that there is a way of working with the lack of exactness on
the right, other than just giving up. Specifically, for a short exact sequence

0→W1 →W2 →W3 → 0
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of vector bundles on X there exists a long exact sequence

0→ Γ(X,W1)→ Γ(X,W2)→ Γ(X,W3)→

→ H1(X,W1)→ H1(X,W2)→ H1(X,W3)→

→ H2(X,W1)→ · · ·

(23.1)

where H i(X,W ) are certain cohomology vector spaces which depend func-
torially on W .
Remark 23.2. From now on, we will use H0(X,W ) = Γ(X,W ) to make
the long exact sequence (23.1) look more uniform.

While we don’t have the tools needed to define H i(X,W ) (the hardest
part are the so-called connecting homomorphisms H i(W3)→ H i+1(W1)) we
will list some of their properties.

• H i(X,W ) = 0, unless 0 ≤ i ≤ dimCX.

• For X compact, H i(X,W ) are finite-dimensional.

• (Serre Duality) For a smooth projective variety X, for all vector bun-
dles W and all i we have a natural duality

H i(X,W ) ∼= HdimCX−i(X,W∨ ⊗KX)∨

where KX is the canonical line bundle on X.

• (Kodaira vanishing theorem) Let L → X be an ample line bundle
on a smooth projective complex variety X, see Definition 7.1. Then
H i(X,L⊗KX) = 0 for all i > 0.

Definition 23.3. For any vector bundle W on a smooth projective variety
X we define the Euler characteristics of W by

χ(X,W ) :=
dimX∑
i=0

dimCH
i(X,W ) = dimCH

0(X,W )−dimCH
1(X,W )+· · · .

The main property of the Euler characteristics of a vector bundle is that
it is additive on short exact sequences. More precisely, for any

0→W1 →W2 →W3 → 0

there holds χ(W2) = χ(W1) + χ(W3), see Exercise 1. This is why it is
often much easier to compute χ(X,W ) than the more geometrically mean-
ingful dimCH

0(X,W ). Fortunately, in some cases of interest Kodaira van-
ishing or other similar theorems allow one to conclude that χ(X,W ) =
dimCH

0(X,W ).
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Additivity of χ on short exact sequences should remind you of the ad-
ditivity of the Chern character. Not coincidentally, the famous Hirzebruch-
Riemann-Roch formula allows one to compute χ(X,W ) if one has a good
understanding of ch(W ), Td(X) and the product in Heven(X,Q).

Theorem 23.4. Let X be a smooth projective complex algebraic variety. We
define

∫
X : Heven(X,Q) → Q as reading off the coefficient at the Poincaré

dual of the point in the top cohomology H2 dimCX(X,Q). Then for any vector
bundle W on X we have

χ(X,W ) =

∫
X
ch(W ) Td(X).

We have no intention of proving Theorem 23.4 but we will look at some
of its corollaries.

• rk = 1, dimCX = 1. We will denote the line bundle by L. Since
H>2(X,Q) = 0, we get

ch(W ) = ec1(L) = 1 + c1(L) = 1 + (degL)P.D.(point).

We also have Td(X) = 1+ 1
2c1(TX) = 1+ 1

2(2−2g)P.D.(point) where
g is the genus of X. Therefore, we have

χ(X,L) =

∫
X

(1+(degL)P.D.(point)+(1−g)P.D.(point)) = degL+1−g.

Here we used Proposition 14.6 that the degree of the canonical line
bundle is 2g−2, and the fact that TX is the dual of the canonical line
bundle.

• rk = 1, dimCX = 2. We have

ch(L) = 1 + c1(L) +
1

2
c1(L)2, Td(X) = 1 +

1

2
c1 +

c2
1 + c2

12

where ci denotes ci(TX). This gives

χ(X,L) =
1

2
c1(L)2 +

1

2
c1(L)c1 +

1

2
c1 +

c2
1 + c2

12
.

In the particular case L = O we get the Noether’s formula23.1

χ(O) =
c2

1 + c2

12
.

23.1 It is worth mentioning that c21 is the self-intersection of the canonical divisor and c2
is the topological Euler characteristics of X, i.e. the alternating sum of its Betti numbers.
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Then for general L that corresponds to a Weil divisor D we get

χ(X,L) =
1

2
D(D −K) + χ(O).

• X = CPn and L = O(k). The cohomology ring of CPn is generated
in degree two by the Poincaré dual H of a hyperplane, with Hn =
P.D.(point) being the generator of the top cohomology.

H∗(CPn,Z) = Heven(CPn,Z) = C⊕ CH ⊕ · · · ⊕ CHn.

We have ch(L) = ekH , but the computation for the Todd class is a bit
more complicated. We have

c(TX) = (1 +H)n+1,

but these are not the Chern roots. Nevertheless23.2,

Td(X) =

(
H

1− e−H

)n+1

so Hirzebruch-Riemann-Roch formula says

χ(X,O(k)) =

∫
X

ekHHn+1

(1− e−H)n+1
= coeff. at Hn

(
ekHHn+1

(1− e−H)n+1

)
= ResH=0

ekH

(1− e−H)n+1
=

1

2πi

∮
|H|=ε

ekH

(1− e−H)n+1
dH

t=1−e−H
=

1

2πi

∮
|t|=ε

(1− t)−k−1

tn+1
dt =

(k + 1)(k + 2) · . . . · (k + n)

n!

where we treat H as a complex variable in the second line. In the last
identity we used that it is the coefficient at tn of the Maclaurin series
of (1 − t)−k−1. We will see the more elementary reason behind this
formula in Exercise 3.

Exercise 1. Prove that Euler characteristics is additive on short exact
sequences. Hint: Use (23.1) and the general statement about alternating
sum of dimensions of vector spaces in a long exact sequence.

Exercise 2. Use Kodaira vanishing theorem to show that for all k >
−n− 1 we have H>0(CPn,O(k)) = 0. Hint: Use Exercise 3 of Section 9.

23.2 One can define Todd classes of vector bundles in a way that’s multiplicative for short
exact sequences and then use the Euler sequence.
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Exercise 3. One can show (see Exercise 2 of Section 7) that for k ≥ 0
the global sections of O(k) on CPn are homogeneous polynomials of degree
k in the homogeneous coordinates on CPn. Together with Exercise 2, show
that this is consistent with the above calculation of χ(CPn,O(k)).

24 Introduction to Grassmannians.

In the next two sections we will talk about the Grassmannian varieties.

Definition 24.1. Let V be a complex vector space of dimension n. For
each k ∈ {0, . . . , n}, the Grassmannian Gr(k, V ) is defined as the set of all
dimension k vector subspaces of V . We also use Gr(k, n) notation for it if
we don’t particularly care about the nature of V .

Clearly, for k = 0 or k = n the set Gr(k, V ) consists of one element.
For k = 1 we have Gr(k, V ) = PV ∼= CPn−1. For k = n − 1 we have
Gr(k, V ) = PV ∨ ∼= CPn−1. This makes Gr(2, 4) the first interesting case.

It is reasonable to expect that Gr(k, n) has a natural structure of an
algebraic variety and a complex manifold. Indeed, this is the case. As with
projective spaces, we can define it by using coordinate charts. We will think
of V as the space of length n row vectors. Then a dimension k subspace W
of V , together with a choice of a basis can be regarded as a k×n matrix M
of rank k. Different choices of said basis of W are related by invertible row
transformations of M . Thus we get, as sets,

Gr(k, n) = {max rank k × n complex matrices}/GL(k,C)

for the left multiplication action of GL(k,C). Note, that in the k = 1 case,
this perfectly reproduces the definition of CPn−1.

Recall that M has rank k if and only if it has a nonzero minor. This
inspires us to consider, for each set of indices

1 ≤ i1 < i2 < · · · < ik ≤ n,

the subset Ui1,i2,...,ik of Gr(k, n) such that

detMi1,...,ik 6= 0

where the determinant is that of the square submatrix of M made from
columns i1, i2, . . . , ik. Note that this property is preserved under invertible
linear row transformations.
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Let us look in detail at the particular case of U1,2,...,k. This means that
the first minor of M is invertible, so Gaussian elimination gives

M ∼


1 0 . . . 0 ∗ . . . ∗
0 1 . . . 0 ∗ . . . ∗
. . . . . . . . . . . . . . . . . . . . .
0 0 . . . 1 ∗ . . . ∗


with the unique reduced row echelon form. This is just a fancy way of saying
that we multiply M by M−1

1,2,...,k to get the first submatrix to be identity.
The entries of the remaining k × (n − k) matrix can be arbitrary complex
numbers, so we can identify U1,...,k with Ck(n−k). For arbitrary i1 < · · · < ik,
the chart Ui1,...,ik can be identified with Ck(n−k) by looking at the entries of
M−1
i1,i2,...,ik

M outside of the ij-th columns.

On the intersection of Ui1,...,ik and Uj1,...,jk , the transition functions are
clearly24.1 rational and holomorphic, which gives Gr(k, n), and more gener-
ally Gr(k, V ) the structure of a smooth complex algebraic variety.

Remark 24.2. Compactness of Gr(k, n) is also fairly easy and is proved
similarly to that of CPn. Every k-dimensional subspace W of Cn has an
orthonormal basis with respect to the standard Hermitean form on Cn. The
space of such bases is a closed subset of (S2n−1)k (given by the orthogonality
conditions) and is therefore compact. It maps continuously and surjectively
onto Gr(k, n), which proves compactness.

We will now embed Gr(k, V ) into some projective space. The idea is
rather elegant: given a dimension k subspace W ⊆ V we get

ΛkW ⊆ ΛkV.

Since dimC ΛkW = 1, we naturally associate to each W a point in the
projective space PΛkV (of dimension n!

k!(n−k)! − 1). So we get a map

µ : Gr(k, V )→ PΛkV.

Remark 24.3. It is not a particularly mysterious map. If we think of
Gr(k, n) as the quotient as before, then the map is induced by

M 7→ (detMi1,...,ik)1≤i1<···<ik≤n .

24.1 To make it even more clear, we ask the reader to find this change of variables explicitly
in Exercise 1.
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Indeed, left multiplication by a matrix A scales all of the above determinants
by detA, so the map is well-defined. It is also clear from this description
that µ is holomorphic (and algebraic).

Remark 24.4. It can be seen from the same construction that the map is
an embedding. If two points go to the same point in the projective space,
then they must have the same nonzero minor, which we can for simplicity
assume to be M1,...,k. We can assume that M is in the reduced form and
observe that determinants of minors that use (k − 1) of the first k columns
pick up precisely the coordinates of the reduced form of M . It is also easy
to see that tangent vectors do not collapse under µ.

Another, more abstract, way of thinking about injectivity is that

v ∧ (ΛkW ) = 0 ∈ Λk+1V ⇐⇒ v ∈W,

so ΛkW determines W uniquely.

This embedding µ is called the Plücker embedding of the Grassmannian
Gr(k, V ) and the homogeneous coordinates on PΛkV are called the Plücker
coordinates. I now want to discuss the equations that cut out Gr(k, V ) in
terms of Plücker coordinates. Hmm, what should we call them?

But, first, let us talk about the exterior algebra Λ∗V . If e1, . . . , en form
a basis of V , then Λ∗V is spanned by ei1 ∧ · · · ∧ eim with the associativity
rules, and ei ∧ ej = −ej ∧ ei. In fact, up to one measly sign, the rules are
the same as those for the polynomials in ei, and the exterior algebra can be
viewed as a ring of polynomials in odd (in physics terminology “fermionic”)
variables. Just as one has partial differentiation operators acting on the
polynomial ring, there are odd analogs of them here, known as contractions.
Specifically, for α ∈ V ∨ we can define linear maps contrα : ΛmV → Λm−1V
with the property that for any v1, . . . , vm ∈ V there holds

contrα(v1 ∧ · · · ∧ vm) = α(v1)v2 ∧ · · · ∧ vm
−α(v2)v1 ∧ v3 ∧ · · · ∧ vm + . . .+ (−1)m−1α(vm)v1 ∧ · · · ∧ vm−1.

(24.1)

Suppose we have a point in Gr(k, V ) ⊆ PΛkV or, equivalently, a decom-
posable element w = v1 ∧ · · · ∧ vk ⊆ ΛkV . Then by (24.1), for arbitrary
α1, . . . , αk−1 ∈ V ∨ we see that

contrαk−1
◦ · · · ◦ contrα1(w)
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is a linear combination of v1, . . . , vk, so we have(
contrαk−1

◦ · · · ◦ contrα1(w)
)
∧ w = 0 ∈ Λk+1V.

We can further restate it by saying that if w is decomposable, then for all
α1, . . . , α2k ∈ V ∨ there holds the following Plücker relation.

contrα2k
◦ · · · ◦ contrαk

((
contrαk−1

◦ · · · ◦ contrα1(w)
)
∧ w

)
= 0 (24.2)

We comment that it suffices to pick αi in (24.2) among the basis elements
of V ∨, so we have a finite and easily computable set of quadratic equations
in coefficients of w. It is true, though definitely not obvious, that Plücker
relations (24.2) cut out exactly Gr(k, V ). As a matter of fact, they generate
the homogeneous ideal of Gr(k, V ) in PΛkV .

Let us compute the smallest interesting example, that of Gr(2, 4). We
have a vector space V with the basis e1, . . . , e4 and we want to characterize
the decomposable elements w ∈ Λ2V . Every w ∈ Λ2V can be written as

w = x12 e1∧e2 +x13 e1∧e3 +x14 e1∧e4 +x23 e2∧e3 +x24 e2∧e4 +x34 e3∧e4,

and we think of x12, . . . , x34 as the homogeneous coordinates of CP5. Since
the dimension of Gr(2, 4) is 4, its image under the Plücker embedding is
a hypersurface in CP5, so we expect a single quadratic equation. More
precisely, if we take α1 to be the dual basis vector e∨1 , then we have

contrα1w = x12 e2 + x13 e3 + x14 e4.

We wedge it with w to get

(contrα1w) ∧ w = (x12e2 + x13e3 + x14e4) ∧ (x12e1 ∧ e2 + · · ·+ x34e3 ∧ e4)

= x12x13 e2 ∧ e1 ∧ e3 + x12x14 e2 ∧ e1 ∧ e4 + x12x34 e2 ∧ e3 ∧ e4

+ x13x12 e3 ∧ e1 ∧ e2 + x13x14 e3 ∧ e1 ∧ e4 + x13x24 e3 ∧ e2 ∧ e4

+ x14x12 e4 ∧ e1 ∧ e2 + x14x13 e4 ∧ e1 ∧ e3 + x14x23 e4 ∧ e2 ∧ e3

= (x12x34 − x13x24 + x14x23)e2 ∧ e3 ∧ e4.

Therefore, the equation of Gr(2, 4) ⊆ CP5 is

0 = x12x34 − x13x24 + x14x23,

and Gr(2, 4) is a smooth (rank 6) quadric hypersurface in CP5.

113



Exercise 1. Find explicitly the change of variables from U1,3 to U3,4 in
Gr(2, 4).

Exercise 2. Verify that in the special case of Gr(2, 4) one can write the
Plücker relation as w ∧ w = 0.

Exercise 3. Give an example of an element w in Λ3C6 with w ∧ w = 0
which can not be written as w = v1 ∧ v2 ∧ v3.

25 Grassmannians continued. Number of lines that
intersect four given lines in CP3.

In this section we continue our discussion of the complex Grassmannians
Gr(k, n).

The singular cohomology ring H∗(Gr(k, n),Z) of Gr(k, n) is well-studied
but is intricate. Cohomology only occurs in even degrees and has a free
generator set given by the Poincaré duals of the so-called Schubert cycles
which are described as follows.

Let us think about points of Gr(k, n) as full rank k × n matrices up to
row transformations and recall that every such matrix has a unique reduced
row echelon form. Such reduced row echelon form is characterized by the
location of the pivot columns, and the Schubert cycle is defined as the closure
of the locus of M whose reduced row echelon form has given pivot columns.
Instead of setting up general notation, we will illustrate this in the particular
case of Gr(2, 4). We can think of the points in Gr(2, 4) as parameterizing
lines l ∼= CP1 in the three-dimensional projective space CP3, instead of
C2 ⊂ C4.25.1 There are six possible choices of pivot columns, and we list the

25.1 This leads to a competing convention where what we call Gr(2, 4) is called Gr(1, 3),
but I believe that ours is more widely used.
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Schubert cycles below, together with their geometric descriptions.(
1 0 ∗ ∗
0 1 ∗ ∗

)
,

(
1 ∗ 0 ∗
0 0 1 ∗

)
,

(
1 ∗ ∗ 0
0 0 0 1

)
,

all of Gr(2, 4) l ∩ {(0 : 0 : ∗ : ∗)} 6= ∅ (0 : 0 : 0 : 1) ∈ l(
0 1 0 ∗
0 0 1 ∗

)
,

(
0 1 ∗ 0
0 0 0 1

)
,

(
0 0 1 0
0 0 0 1

)
.

l ⊂ {(0 : ∗ : ∗ : ∗)} (0 : 0 : 0 : 1) ∈ l ⊂ {(0 : ∗ : ∗ : ∗)} l = (0 : 0 : ∗ : ∗)
(25.1)

Remark 25.1. There is an equivalent description of Schubert cycles in
terms of dimensions of the intersection of the subspace W with elements
of a complete flag on V , see [19].

There is a very nice alternative description of the cohomology ring of
Gr(k, n) in terms of the Chern classes of certain vector bundles. Specifically,
we have a natural exact sequence of vector bundles on Gr(k, n)

0→ S → O⊕n → Q→ 0. (25.2)

All fibers of O⊕n are naturally identified with Cn, the fiber of S → Gr(k, n)
over the point that corresponds to W ⊂ Cn is W , and the fiber of Q over
this point is Cn/W . We call S and Q the tautological subbundle and the
tautological quotient bundle respectively.

From the properties of Chern classes, we have

1 = c(S)c(Q) = (1 + s1 + s2 + · · ·+ sk)(1 + q1 + q2 + · · ·+ qn−k).

This gives relations on si and qi and there is a beautiful result that states
that H∗(Gr(k, n),Z) is generated by si and qj subject to these relations.

We will illustrate this in the case of Gr(2, 4). We have (1 + s1 + s2)(1 +
q1 + q2) = 1. Therefore,

s1 + q1 = 0, s1q1 + s2 + q2 = 0, s1q2 + s2q1 = 0, s2q2 = 0. (25.3)

The quotient of Z[s1, s2, q1, q2] by the relations (25.3) is isomorphic to

Z[s1, s2]/(s3
1 − 2s1s2, s

2
1s2 − s2

2),
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see Exercise 1. This implies s1s
2
2 = s3

1s2 = 2s1s
2
2, so s1s

2
2 = s3

1s2 = 0. From
here we get that s1s

2
2 = s3

2 = 0 and s5
1 = 0. As the result, we get

H0(Gr(2, 4),Z) = Z, H2(Gr(2, 4),Z) = Zs1, H
4(Gr(2, 4),Z) = Zs2

1 ⊕ Zs2,

H6(Gr(2, 4),Z) = Zs1s2, H
8(Gr(2, 4),Z) = Zs2

2.

The geometric meaning of the si classes is the following.

• The q1 = −s1 class is the Poincaré dual of the Schubert cycle of lines
in CP3 that intersect a given line (the second entry in (25.1)). To see
that, we dualize the short exact sequence of vector bundles (25.2) to
get

0→ Q∨ → (O⊕4)∨ → S∨ → 0.

Linear functions on C4 give sections of the bundle S∨ by looking at
their restrictions on the fibers of S. Then the Plücker coordinates give
sections of Λ2S∨, and one can see that this Schubert cycle is given
by x12 = 0. The Poincaré dual of the divisor that corresponds to a
section of Λ2Q is therefore c1(S∨) = −c1(S) = −s1.

• The s2 class is the Poincaré dual of the Schubert class of lines inside a
given plane in CP3 (the fourth entry). To explain this, we invoke the
general claim the top Chern class of a vector bundle is equal, under
some transversality conditions, to the Poincare dual of the zero locus
of a section. In our case, with a section given by a coordinate on C4,
and the vanishing locus is that of lines l that lie in the corresponding
plane.

• The (−s1)s2 class is the Poincaré dual of the Schubert class of lines
that contain a given point and lie inside a given plane in CP3 (the fifth
entry). Indeed, we can think of this condition as lying in a given plane
and intersecting a line.

• The class s2
2 is the Poincaré dual of a point. Indeed, we can think of it

as intersection of the two Schubert cycles that correspond to s2, but
for different planes and use that two distinct planes in CP2 intersect
transversely in a line.

• We also note that the Poincaré dual of the Schubert class of lines that
contain a given point (the third entry), is given by s2

1− s2. To explain
this25.2 we look at the Poincaré dual of (−s1)2 as the locus of lines

25.2 That’s not exactly a proof.
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that intersect two given lines l1 and l2 in CP3. If l1 and l2 intersect
at a point p, then l that intersects both l1 and l2 come in two flavors:
lines in the span of l1 and l2 (dual to s2) and lines through p.

Remark 25.2. The fact that (−s1)4 = 2(−s1)2s2 = 2s2
2 = 2 P.D.(point) is

the manifestation of Gr(2, 4) being a degree two hypersurface in CP5. Indeed,
(−s1) is the pullback of the hyperplane class in CP5 and for a submanifold
of complex dimension d in CPn, the d-th power of this class measures the
degree of the submanifold.

We end our discussion of Grassmannians with the following interesting
calculation. Let l1, l2, l3, l4 be four lines in CP3 which we assume to be in
general position. How many lines l in CP3 intersect all li? Clearly, this locus
is the Poincaré dual to the intersection (−s1)4, so we should get two points,
so we have two lines l that intersect all of li. One must always be careful in
algebraic geometry with various transversality issues, but it works out fine
here.

Remark 25.3. There is another argument for the same statement that does
not involve Grassmannians. The space of quadratic polynomials in homoge-
neous coordinates of CP3 has dimension 10, and the conditions of vanishing
on a given line li is that of vanishing of three coefficients of the restriction.
Thus, for general l1, l2, l3 there is a unique quadric surface X in CP3 that
contains all three. If the lines are generic, the quadric will have a full rank
and X will be isomorphic to CP1×CP1 in its Segre embedding. The lines on
X are precisely the fibers of two projections to CP1 (see Exercise 3) and since
l1, l2, l3 are disjoint, they must be coming from the same projection. The line
l4 intersects X in two points p1, p2. Any line l that intersects l1, l2, l3 has at
least three intersection points with X. Therefore, l lies in X, since a nonzero
quadratic polynomial can not have three different roots. Thus l must the the
fiber of the second projection that passes through either p1 or p2.

Exercise 1. Prove that the quotient of Z[s1, s2, q1, q2] by the relations
(25.3) is isomorphic to Z[s1, s2]/(s3

1 − 2s1s2, s
2
1s2 − s2

2).

Exercise 2. Give a geometric meaning to the relations (s2
1 − s2)s2 = 0

and (s2
1 − s2)2 = P.D.(point) in terms of intersections of the corresponding

Schubert classes.

Exercise 3. Let X ⊂ CP3 given by x0x3−x1x2 = 0. Prove that all lines
in X are either

la,b = {(x0 : x1 : x2 : x3) = {(ay0 : ay1 : by0 : by1), (y0 : y1) ∈ CP1}
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or

l′a,b = {(x0 : x1 : x2 : x3) = {(ay0 : by0 : ay1 : by1), (y0 : y1) ∈ CP1}

for some (a, b) 6= (0, 0).

26 Mirror Symmetry.

In this section, I will give a brief introduction into an active area of algebraic
geometry known as Mirror Symmetry. It is a rather recent development,
starting in the early 90-s. As opposed to other sections, I have earned the
right to present a highly subjective overview of the field, as this has been
my primary research area over the last three decades.

We start with the classical example of the smooth quintic threefold26.1

in CP4. Given a homogeneous polynomial F (x0, . . . , x4) of degree 5 in the
homogeneous coordinates of CP4, we consider

Q := {F (x0, . . . , x4) = 0} ⊂ CP4.

It is a simple three-dimensional example a so-called Calabi-Yau variety, in
particular KQ = O by the adjunction formula of Proposition 9.7.

We will ask the following question: How many lines in CP4 lie in Q?
This is a reasonable question, in the sense that the dimension of the space
of lines in CP4 is dim Gr(2, 5) = 6 and for each line

(x0 : . . . : x4) = (a0u+ b0v : a1u+ b1v : . . . : a4u+ b4v), (u : v) ∈ CP1

the condition of being in Q is the condition that the coefficients of the re-
striction of F to l are all zero. There are six coefficients in a homogeneous
polynomial of degree 5 in u and v, so it is plausible that, at least for gener-
ically chosen F , there are finitely many lines in Q.

Remark 26.1. Why would anybody care about the number of lines in Q? It
is a very long tradition to look for some nice subvarieties in a given variety
and it doesn’t get nicer than lines. Finding them may be difficult, so one
can settle for finding their number.

26.1 The terms “threefold” is an amalgamation of “three” and “manifold”. It simply
means a three-dimensional algebraic variety. There are also fourfolds, fivefolds, etc.
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Let us try to compute it. We have the usual short exact sequence of
vector bundles on Gr(2, 5)

0→ S → C5 ×Gr(2, 5)→ Q→ 0

which we dualize to get

0→ Q∨ → (C5)∨ ×Gr(2, 5)→ S∨ → 0.

Each xi for i = 0, . . . , 4 gives a section of S∨ and F (x0, . . . , x5) gives a
global section sF of the rank 6 vector bundle Sym5(S∨). In simple terms,
the fibers of Sym5(S∨) encode the degree five homogeneous functions on
lines l. The section sF encodes the restrictions of F to the lines. For for a
point p ∈ Gr(2, 5) that corresponds to the line l ⊂ CP4 we have

(l ⊂ Q) ⇐⇒ sF (p) = 0.

We can use Chern classes to figure out the number of zeros of a section.
For a rank r vector bundle W → X on an r-dimensional variety X we
have cr(W ) = nP.D.(point) where n is the expected number of zeros of
a global section of W . We do not prove it, but in the special case where
W = L1⊕· · ·⊕Lr and Li have sections ti, the zeros of the section (t1, . . . , tr)
of W occur at the intersection of the zeros of ti, which matches cr(W ) =
c1(L1) · · · c1(Lr).

The short exact sequence 0→ S → O⊕5 → Q→ 0 gives

(1 + s1 + s2)(1 + q1 + q2 + q3) = 1

for the Chern classes of S and Q. We can compute

(1 + s1 + s2)−1 = 1− (s1 + s2) + (s1 + s2)2 − (s1 + s2)3 + (s1 + s2)4 − . . .

which allows us to compute qi in terms of s1 and s2. It also gives us relations
on si by looking at the coefficients of degree 4, 5 and 6.

s2
2 − 3s2

1s2 + s4
1 = −3s1s

2
2 + 4s3

1s2 − s5
1 = −s3

2 + 6s2
1s

2
2 − 5s4

1s2 + s6
1 = 0

After some boring linear algebra, we use these equations to get

s6
1 = 5s3

2, s
4
1s2 = 2s3

2, s
2
1s

2
2 = s3

2.
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We also note that s3
2 is the Poincare dual of a point. Indeed, a section of

S∨2 gives the lines inside a CP3 ⊂ CP4, and intersection of three generic
hyperplanes in CP4 is a line.

We have c(S∨) = 1− s1 + s2 = (1 + α)(1 + β) for the Chern roots α, β,
and

c(Sym5(S∨)) = (1 + 5α)(1 + 4α+ β) · · · (1 + 5β)

so

c6(Sym5(S∨)) = 25αβ(4α+ β)(α+ 4β)(3α+ 2β)(2α+ 3β)

= 25s2(4(s2
1 − 2s2) + 17s2)(6(s2

1 − 2s2) + 13s2)

= 25s2(4s2
1 + 9s2)(6s2

1 + s2)

= 600s4
1 + 1450s2

1s2 + 225s3
2

= (1200 + 1450 + 225)s3
2 = 2875 P.D.(point)

from which we conclude that we expect 2875 lines in Q.

Remark 26.2. The reason we only “expect” this number of lines has to do
with the transversality. To know that this is the precise number, we need to
ensure that image of sF intersects the zero section of Sym5(S∨) transversely,
which we will not do. Note also that there exist smooth quintics Q which
have infinitely many lines in them, see Exercise 1.

One can similarly ask about the number of degree two Riemann spheres
in Q. What we mean by this is looking at smooth conic curves in some
CP2 ⊂ CP4. The space of CP2-s inside of CP4 is a Grassmannian Gr(3, 5)
of dimension 6, there is a dimension 5 family of conics in each CP2, and the
restriction of F to the conic is a polynomial of degree 10, with 11 coefficients.
So the expected dimension of the solution space is zero, and we expect a
finite number. Indeed, this number has been found to be 609250. There is
a similar number nd for every integer degree d > 0, at least conjecturally.

In the early 1990s physicists26.2 came up with, at the time, a completely
weird way of computing nd, [7]. It involved looking at some hypergeomet-
ric functions which are solutions of certain linear ODEs, and doing some
strange change of variables in formal power series. In particular, they pre-
dicted n3 = 317206375, which was confirmed by mathematicians by a much
more complicated calculation. This has lead to an explosion in mathemat-
ical research inspired by string theory. It goes under the moniker mirror

26.2 We call string-theorists physicists, but not all physicists agree.
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symmetry for the following reason. There are certain invariants of algebraic
varieties known as Hodge numbers, and for the smooth quintic Q they are

1
0 0

0 1 0
1 101 101 1

0 1 0
0 0

1

while the ODEs come from looking at the mirror manifolds with Hodge
numbers:

1
0 0

0 101 0
1 1 1 1

0 101 0
0 0

1

So the Hodge numbers are flipped across the diagonal line, hence the term
“mirror”. I want to stress that this is a very strange phenomenon – some
invariants of the tangent bundle on one manifold are equal to the same
invariants of the cotangent bundle on another manifold.

I will now briefly mention different avenues of research inspired by this
calculation.

• Gromov-Witten invariants. This is a way to rigorously define
counts of curves in algebraic varieties which have certain properties,
for example passing through a given number of points or lying in some
subvarieties. The main technical tool is Kontsevich’s moduli spaces of
stable maps, see [23, 18]. In particular, Givental in 1996 proved the
original physicists’ statement about counts of curves in a quintic.

• More examples of mirrors. In 1992 Batyrev [3] realized that the
original quintic example has a combinatorial underpinning in terms of
so-called reflexive polytopes. The geometric way of thinking about it
is passing from hypersurfaces in CP4 to hypersurfaces in related, but
more complicated, spaces known as Gorenstein toric Fano varieties,
encoded by the so-called reflexive polytopes. In dimension two, there
are 16 reflexive polytopes, up to equivalence, but the numbers grow
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fast. There are 4319 such polytopes in dim = 3, there are 473800776
of them for dim = 4 (computed by Kreuzer and Skarke [24]), and
dim = 5 case seems hopeless. However, the fact that there are so many
in dimension four (these give Calabi-Yau threefolds) was a surprise,
and not a pleasant one, as it was originally hoped that there would be
relatively few Calabi-Yau threefolds, and their special properties would
indicate that string theory constraints lead to some highly constrained
geometry and thus some simple description of the physical world.

My contribution to this subject was to extend the construction from
hypersurfaces to complete intersections in toric varieties. Jointly with
Batyrev, we proved the duality of appropriately defined26.3 Hodge
numbers for these complete intersections.

• Classifying Calabi-Yau threefolds. It is currently unknown if
Calabi-Yau threefolds fall into a finite number of topological types,
or even have a bound on their Euler characteristics, although some
important special cases have been settled positively. Also, after allow-
ing certain conifold transitions, one may hope that all of these three-
folds are connected to each other, this is the so-called Miles Reid’s
dream.26.4 As far as I know, this is wide open, and it is not clear if we
have the tools to make progress, although all our current constructions
only lead to finitely many families.

• Open strings. There is a version of mirror symmetry that deals, from
the physical point of view, with open strings propagating on Calabi-
Yau manifolds. It was proposed by Kontsevich that the boundary
conditions on these strings should be the so-called derived category
of coherent sheaves on one side and the derived Fukaya category on
the other side. The statement that these triangulated categories for
mirror manifolds are equivalent, and the area of research that aims
at clarifying it, are known as the Homological Mirror Symmetry. It
is the most active current area in mirror symmetry, combining ideas
from algebraic and symplectic geometry.

• Generalized varieties. Constructions of mirror symmetry natu-
rally lead people to consider some generalizations of varieties, such as
Deligne-Mumford stacks, Landau-Ginzburg models, and various fla-
vors of noncommutative geometry.

26.3 These Hodge numbers were defined by Batyrev and Kontsevich.
26.4 I have also seen it attributed to Hirzebruch.
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Exercise 1. Prove that the Fermat quintic threefold {x5
0 + . . .+x5

4} = 0
is a smooth subvariety of CP4. Verify that for any point (a : b : c) on the
curve {a5 + b5 + c5 = 0} ⊂ CP2 the line

(x0 : . . . : x4) = (u : e
πi
5 u : av : bv : cv), (u : v) ∈ CP1

lies in the Fermat quintic.

Exercise 2. Follow our method to deduce that one expects to find 27
lines on a cubic surface F = 0 in CP3. In fact, in this case every smooth
complex cubic surface has exactly 27 lines on it. We have seen this from
another perspective in Section 20.

Exercise 3. A (generic) degree d rational curve in CP4 is given by

(x0 : . . . : x4) = (f0(u, v) : . . . : f4(u, v)), (u : v) ∈ CP1

where fi are generically chosen homogeneous polynomials on degree d in
variables u and v. Give a rough count of the dimension of the space of
such curves and show that it is equal to the number of coefficients of the
restriction of the quintic equation to the curve, thus giving us an expected
finiteness of the number of curves. Hint: Take into account scaling of the
variables and the automorphisms of CP1.

27 Schemes.

Since we are getting close to the end of these notes, we might as well talk
about the language of schemes. It is the standard rigorous framework of
algebraic geometry, introduced by Grothendieck and his collaborators. We
will do the best we can within the constraints of one section.

We start with the definitions of presheaves and sheaves.
Definition 27.1. Let X be a topological space. A presheaf F of abelian
groups is a contravariant functor from the category of open sets in X together
with inclusions to the category of abelian groups. In more concrete terms,
the data of F are:

• abelian groups F(U), one for each open set U ⊆ X,

• group homomorphisms ρV⊆U : F(U) → F(U) for all inclusions V ⊆
U , with the property that for W ⊆ V ⊆ U there holds

ρW⊆U = ρW⊆V ◦ ρV⊆U .
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We also require ρU⊆U = idF(U).

Remark 27.2. The abelian groups F(U) are called the groups of sections of
F on U . The maps ρ are called the restriction maps. Because the notation
is somewhat heavy, we will just say which open set we want to restrict to and
mean by this the image of the corresponding map of the groups of sections.

Definition 27.3. A presheaf of abelian groups F is called a sheaf if it sat-
isfies the following gluing property. For any open set U ⊆ X and any open
cover

U =
⋃
α

Uα,

and any collection of sα ∈ F(Uα) such that for all α, β the restrictions of
sα and sβ to Uα ∩ Uβ are the same, there exists a unique s ∈ F(U) that
restricts to all sα ∈ F(Uα).

Remark 27.4. It is common to put a condition F(∅) = 0 for both presheaves
and sheaves. Technically, since we can do an empty cover of an empty set,
the uniqueness of gluing implies this statement for sheaves.27.1

Here are some examples of sheaves.

• Let X be a real manifold. For each open set U ⊆ X we define F(U) to
be the space of continuous real-valued functions on U . The restriction
maps are, obviously, the restriction maps. It is a sheaf, because any
collection of continuous functions on open subsets Uα which is com-
patible on the intersections naturally glues to a continuous function
on
⋃
α Uα.

• Let π : W → X be a holomorphic vector bundle over X. We denote
by F(U) the space of holomorphic sections of π−1U → U , and the
restriction maps are again the restriction maps.

Remark 27.5. An example of a presheaf that is not a sheaf on a real man-
ifold X can be given by constant functions. The problem is that if we have a
disjoint union U = U1tU2 then constant functions on U1 and U2 do not glue
to a constant function on U . On the other hand, locally constant functions
do form a sheaf.

Grothendieck’s idea. For any commutative (associative, with 1) ring
A one can construct a topological space SpecA with a sheaf of rings O on

27.1 This reminds me of the statement that the determinant of a 0×0 matrix is 1, because
it is the sum of 0! = 1 terms, the term is a product of 0 entries (so it is equal to 1), and
the sign of the term is positive because there are zero inversions.
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it. As a set,
SpecA = {prime ideals of A}.

The topology is given by the Zariski topology, i.e. for any subset (equiva-
lently, ideal) I of A the set

V (I) := {p ∈ SpecA, p ⊇ I}

is declared a closed set.

We will now construct the sheaf O on SpecA. For any prime ideal p we
can consider the localization Ap of A which is the set of formal fractions a

s
with a ∈ A and s 6∈ p, up to the equivalence relation(

a1

s1
∼ a2

s2

)
⇐⇒ (there exists s3 6∈ p, such that s3(s1a2 − s2a1) = 0) .

There is a ring homomorphism A→ Ap, called the localization map, which
sends a to a

1 . Informally, O is the “sheaf of collections of elements in Ap,
which are locally given by a fraction”. The precise definition is the following.
For a Zariski open subset U ⊆ SpecA we define

O(U) :=


collections of αp ∈ Ap for all p ∈ U,

such that for each p ∈ U there exists p ∈ U1 ⊆ U, a1, s1 ∈ A,
so that for all q ∈ U1 there holds αq = a1

s1
∈ Aq.


In particular, in the above definition a1

s1
makes sense in Aq, i.e. s1 6∈ q for

all q ∈ U1.

It is clear what the restriction maps are – we just use the same αp but for a
potentially smaller Zariski open subset. It is also clear that each O(U) comes
with a ring structure, induced from the ring structure of the localizations,
see Exercise 1. What is not at all clear is how one can compute any groups
O(U), for example O(SpecA). The following key proposition answers this
in a very satisfactory way.

Proposition 27.6. For every a ∈ A, the collection of elements a
1 in Ap for

all p gives a section of O on SpecA. The resulting map A→ O(SpecA) is
a ring isomorphism. In particular, one can recover the ring A back from the
data (SpecA,O).

Proof. The proof is left to the reader of Hartshorne27.2.

27.2 [20, Proposition II.2.2]
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It is important to define morphisms of schemes. If we have a ring homo-
morphism f : A→ B, we get the map of sets

SpecB → SpecA

which sends the prime ideal p ⊂ B to the prime ideal f−1(p) ⊂ A.27.3 This
is a continuous map of topological spaces, see Exercise 2. There is also
some additional data that mimics the pullback of holomorphic functions for
holomorphic maps of complex manifolds.

We will not get into the technical details, but one defines schemes as
topological spaces X with sheaves of rings OX on them which locally look
like (SpecA,O), and morphisms are defined in such a way that scheme
morphisms from SpecB to SpecA are in natural bijection with ring homo-
morphisms A→ B.

Here are some notable examples of schemes.

• SpecC. This is my favorite. It consists of just one point, namely the
prime ideal {0} ⊂ C. The sections of O on it are C.

• Spec k for any field k. This is also just a single point, but the sections
of O are now k.

• SpecC[x1, . . . , xn]. Algebraic geometers often denote this scheme by
Cn, but in addition to the usual points on Cn which correspond to max-
imal ideals of C[x1, . . . , xn] we have all sorts of other points that encode
prime ideals. Note that the ring homomorphism C → C[x1, . . . , xn]
gives a scheme map SpecC[x1, . . . , xn]→ SpecC. This is a particular
case of a “scheme over C”, which is equivalent to saying that all of the
rings are in fact C-algebras. One can recover the usual points of Cn
as maps SpecC→ SpecC[x1, . . . , xn] of schemes over C.

• SpecC[t]/(t2). Again, as a topological space, it is just a single point,
but it is what’s called a “fat point”. Maps from it to a C-scheme
X are in bijection to tangent vectors to X. This example is a good
motivation for allowing arbitrary rings and not just integral domains.

Where there are rings, there are modules. To every module M over a
commutative ring A one can associate a sheaf of O-modules over SpecA,

27.3 Preimages of prime ideals are prime, while the same can not be said about the
maximal ideals. This is a good reason why we want to include all prime ideals into Spec.
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denoted by M̃ . It is built from localizations of M in the same way as O but
with numerators of fractions now in M instead of A. Then one defines a
quasi-coherent sheaf on a scheme X as a sheaf of OX -modules that locally
look like M̃ .

We can in particular look at locally free quasi-coherent sheaves of finite
rank r as analogs of sheaves of sections of vector bundles over a smooth
complex manifold.27.4 There is also a concept of cohomology groups of
arbitrary sheaves, which we will not go into.

The richness and flexibility of working with arbitrary commutative27.5

rings give scheme theory an advantage over the more naive point-based
formulations. The disadvantage is a layer of bureaucracy that takes some
getting used to. There is obviously a lot more one can say about this topic,
but hopefully this section gives the reader a flavor of the language of schemes,
and a bit of a preview, if they are to go on to study algebraic geometry in
rigorous detail.

Exercise 1. Prove that for two sections (αp)p∈U and (βp)p∈U of O(U)
their sum and product (αp + βp)p∈U , (αpβp)p∈U are also sections of O(U).

Exercise 2. For a ring homomorphism f : A→ B, prove that the map
SpecB → SpecA which sends p ⊂ B to f−1(p) ⊂ A is continuous in Zariski
topology.

Exercise 3. Give an example of a commutative ring homomorphism so
that the preimage of a maximal ideal is prime, but not maximal.

28 Modular curves and modular forms.

As we know by now, elliptic curves are given by C/L where L is a discrete
rank two additive subgroup of C. For any choice of free generators (l1, l2) of
L, exactly one of the fractions l1

l2
and l2

l1
has a positive imaginary part. We

call the ordered pair (l1, l2) an oriented basis if Im( l2l1 ) > 0, in other words,
l2 is located counterclockwise from l1.

27.4 This is why we have been using calligraphic O in our O(k) notation for line bundles
on CPn.
27.5 Noncommutative rings are not entirely hopeless, but localization does not seem to

work very well unless denominators are central, or at least normal. This really limits
attempts of extending the theory.
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For any oriented basis (l1, l2) of L, we define τ = l2
l1

in the upper half
plane H = {Im τ > 0} and observe that

C/L ∼= C/(Z + Zτ),

with the isomorphism induced by the multiplication by l−1
1 . Conversely, if

we scale L to make it in the form Z+Zτ , the preimages of 1 and τ form an
oriented basis.

What happens to τ if we pick another basis? Different oriented bases are
related by the group SL(2,Z) of orientation-preserving automorphism of Z2.
If (

l′2
l′1

)
=

(
a b
c d

)(
l2
l1

)
then

τ ′ =
l′2
l′1

=
al2 + bl1
cl2 + dl1

=
a l2l1 + b

c l2l1 + d
=
aτ + b

cτ + d
.

Therefore, the action of SL(2,Z) on the upper half plane that sends τ to
aτ+b
cτ+d preserves the isomorphism class of the elliptic curve C/(Z + Zτ). The
converse is also true, see Exercise 1. Thus we see that the set of all elliptic
curves up to isomorphism is the quotient of the upper half-plane H by the
above action of the group SL(2,Z).

It is possible to explicitly describe a fundamental domain of this action,
see the picture below.

R

|τ | = 1

r ire2πi/3

H

0

We do not prove that this is the fundamental domain but instead refer
to Chapter 7 of [27]. Most points of H have the stabilizer {±Id} which
corresponds to the Kummer involution z 7→ (−z) on C/L. For τ = i, the
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stabilizer is isomorphic to Z/4Z, generated by

(
0 1
−1 0

)
. This corresponds

to the square lattice of Gaussian integers with the extra automorphism that
is the multiplication by i. Of course, we have conjugate stabilizers in the

SL(2,Z) orbit of τ = i. Similarly, for τ = e
2πi
3 , the stabilizer is Z/6Z,

generated by

(
1 1
−1 0

)
. The lattice is the hexagonal lattice of Eisenstein

integers, again with more automorphisms.

We will now define modular forms.

Definition 28.1. A holomorphic function f : H → C is called a modular
form of weight k for the group SL(2,Z) if it satisfies the following properties.

For every

(
a b
c d

)
∈ SL(2,Z) there holds

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ).

This means in particular that f(τ + 1) = f(τ), so f can be written as
a Laurent power series in q = e2πiτ at q = 0. We furthermore assume
that f extends to a holomorphic function in a neighborhood of q = 0, i.e.
f(τ) =

∑
n≥0 ane2πinτ .

We remark that the weight of a nonzero modular form for SL(2,Z) has
to be even, because −id ∈ SL(2,Z) implies that f(τ) = (−1)kf(τ).

Examples of modular forms are provided by the coefficients of the Weier-
strass function P (for the lattice L = Z + Zτ). Recall that

P(z) =
1

z2
+
∑

06=l∈L

(
1

(z − l)2
− 1

l2

)
.

Coefficients at zk in the Laurent are found by integrating z−k−1P(z) over a
small circle around the origin, so absolute uniform convergence of the series
implies that one can simply add up the corresponding coefficients of the
expansion. We have

1

(z − l)2
− 1

l2
=
∑
k≥1

(k + 1)
zk

lk+2
.

Thus, the coefficients of P at zk for k ≥ 1 are, up to constant factor, given
by ∑

l 6=0

1

lk+2
=

∑
(m,n) 6=(0,0)

1

(mτ + n)k+2
.
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This prompts the following definition.

Definition 28.2. We define the Eisenstein series

Gk(τ) =
∑

(m,n) 6=(0,0)

1

(mτ + n)k

for k ≥ 3.

Proposition 28.3. The Eisenstein series Gk is zero for odd k. For even
k ≥ 4, Gk is a modular form of weight k for SL(2,Z).

Proof. It is easy to see that the series Ek is absolutely convergent. We have

Gk

(
aτ + b

cτ + d

)
=

∑
(m,n)6=(0,0)

1

(maτ+b
cτ+d + n)k

=
∑

(m,n)6=(0,0)

(cτ + d)k

((ma+ nc)τ +mb+ nd)k

which equals (cτ + d)kGk(τ) by reindexing the summation. The first state-
ment then follows from modularity (or just observing that (m,n) and (−m,−n)
terms cancel out).

It is common to normalize the series Gk to give it the constant term 1.
Moreover, one can write explicitly the q-expansions.

Ek(τ) =
Gk(τ)

2ζ(k)
= 1− 4k

Bk

∑
n

∑
d|n

dk−1qn

where q = e2πiτ , ζ(k) =
∑

n≥1
1
nk

and Bk are the Bernoulli numbers.28.1 In
particular, we have

E4(τ) = 1 + 240
∑
n

∑
d|n

d3qn, E6(τ) = 1− 504
∑
n

∑
d|n

d5qn. (28.1)

The ring of modular forms has a remarkably simple structure.

Theorem 28.4. Every modular form is a polynomial in E4(τ) and E6(τ)
with constant coefficients.

Proof. We will only sketch the argument, see [27]. If we denote by m∞ the
order of vanishing of a nonzero weight k modular f(τ) as a power series in
Q, and by mp order of vanishing of it at a point p ∈ H, then we have

m∞ +
1

2
mi +

1

3
me2πi/3 +

∑̃
p
mp =

k

12
(28.2)

28.1 We do not prove it in general, but treat the k = 4 case in Exercise 3.
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where
∑̃

is the sum over other zeros of f in the fundamental domain. This is

not too hard to prove by integrating f ′

f over the boundary of the fundamental
domain.

Then one can prove that E2
6 − E3

4 is not vanishing anywhere on H and
has a simple zero at q = 0. One can use this to argue that the dimension of
the space of weight k + 12 modular forms is one larger than that of weight
k modular forms, and the rest is fairly easy.

The set of orbits of SL(2,Z) on H can be mapped to CP1 by

τ 7→ (E2
6(τ) : E3

4(τ)). (28.3)

Indeed, when you change τ to aτ+b
cτ+d , both E2

6 and E3
4 acquire a factor of

(cτ + d)12. We can also argue that (E3
4 : E2

6) determines the elliptic curve
uniquely, up to isomorphism, for example by looking at the equation of the
curve in its Weierstrass embedding into CP2. This identifies H/SL(2,Z)
with CP1 \ (1 : 1). We compactify H/SL(2,Z) to CP1 by adding the cusp
q = 0 (a.k.a. i∞).

Remark 28.5. The map (28.3) looks suspiciously like mapping to CPN
using sections of a line bundle. Indeed, one can think of modular forms
as sections of line bundles, but not on a variety but rather on a so-called
Deligne-Mumford stack. This is beyond what we could cover in these notes.

One is often interested in quotients of the upper half plane by other
groups. The following are the most well-studied. They are given by matrices

γ =

(
a b
c d

)
in SL(2,Z) with certain properties modulo a fixed integer n.

Specifically, we have subgroups Γ(n), Γ1(n) and Γ0(n) of SL(2,Z) given by
the conditions

γ =

(
1 0
0 1

)
modn, γ =

(
1 ∗
0 1

)
modn, γ =

(
∗ ∗
0 ∗

)
modn

respectively. One can, and does, talk about modular forms of weight k with
respect to these groups. The quotients ofH by these groups are compactified
by adding a finite number of cusps, corresponding to the orbits of the group
on Q t {i∞}. The resulting curves X(n), X1(n) and X0(n) have genus g
that grows roughly as c n3, c n2 and c n respectively.

We finish this section by a couple of fascinating observations that connect
the theory of modular forms with that of the largest sporadic finite simple
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group M of size approximately 8 · 1053, known as the Monster. Consider the
j-invariant

J(τ) = (12)3 E3
4

E3
4 − E2

6

.

It has a Laurent power series expansion in q = e2πiτ

J(τ) =
1

q
+ 744 + 196884 q + 21493760 q2 + . . .

and a remarkable observation, due to John McKay, is that the coefficients
at small positive degrees of q are small positive linear combinations of di-
mensions of the irreducible complex representations of M! For example,
the smallest irrep of the Monster, other than the trivial one-dimensional
representation, has dimension 196883.

Another interesting relation is the following. The involution wn : H → H
defined by

τ → − 1

nτ

normalizes Γ0(n) and thus acts on the modular curve X0(n). Then for prime
n the quotient X0(n)+ = X0(n)/(wn) has genus zero if and only if n divides
the size of M, i.e.

n ∈ {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59, 71}.

Remarkably, both of these observations have something to do with so-called
vertex operator algebras, which is an algebraic construction inspired by
string theory.

It is fair to say that the theory of modular curves and modular forms
is a fascinating topic, on the intersection of algebraic geometry, arithmetic
geometry, analytic number theory, and even string theory. We barely scratch
the surface here.

Exercise 1. Prove that if two elliptic curves C/L and C/L′ are isomor-
phic as complex manifolds, then there exists λ ∈ C such that L′ = λL. Hint:
Argue that the space of holomorphic one-forms on C/L is one-dimensional.
Then (after arranging that the isomorphism preserves 0) compare the pull-
back of the differential form dz on C/L′ with dz on C/L and use t =

∫ t
0 dz.

Exercise 2. Prove that G4(e2πi/3) = G6(i) = 0.
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Exercise 3. Prove the formula for E4 in (28.1). Hint: The constant term

in G4(τ) is 2ζ(4) = π4

45 . By splitting the sum in Definition 28.2 into sums for

fixed m, it suffices to show
∑

n∈Z
1

(x+n)4
= 8π4

3

∑
r≥0 r

3e2πirx, which follows

by differentiation from the well-known formula
∑

n∈Z
1

(x+n)2
= π2

sin2 πx
=

−4π2
∑

r≥0 re
2πirx.

29 Toric varieties.

In this section we will talk about the topic that is dear to my heart, that of
toric varieties. They are a special class of algebraic varieties which are en-
coded by the combinatorial data of lattices and convex cones and polytopes.
As always, we will work over the complex numbers.

Throughout this section, by a lattice M we will simply mean a free
abelian group M . It naturally sits inside a real vector space MR := M ⊗ZR.

Definition 29.1. A rational convex polyhedral cone σ ⊆ MR is defined to
the positive span ∑

i

R≥0vi

of a finite number of elements vi ∈M .

Remark 29.2. One can equivalently define a convex polyhedral cone as an
intersection of a finite number of rational subspaces⋂

i

{v ∈MR, µi(v) ≥ 0}

where µi are elements of the dual lattice Hom(M,Z) in the dual vector space
M∨R . It is rather tedious to prove that these two concepts are equivalent, so
we will not do that. The equivalence is clear in dimension two, which will
be our primary focus in this section.

To every rational polyhedral cone σ we can associate an affine toric va-
riety as follows.

Definition 29.3. The set σ ∩M has a natural semigroup structure. We
denote by C[σ ∩M ] the corresponding semigroup ring. It is a vector space
with a basis indexed by m ∈ σ ∩M . We denote the basis elements by [m]
and define the multiplication by [m1][m2] = [m1 + m2], naturally extended
to the whole semigroup ring.
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It is easy to see that if σ = MR, then σ ∩M = M ∼= ZrkM and C[σ ∩M ]
is isomorphic to the Laurent polynomial ring in rkM variables. One can
view all C[σ ∩M ] as subrings of this ring.

Proposition 29.4. The semigroup σ∩M is finitely generated, and therefore
C[σ ∩M ] is a finitely generated C-algebra.

Proof. By Definition 29.1, every lattice element m ∈ σ ∩M can be written
as a nonnegative linear combination of the generators vi of σ

m =

k∑
i=1

αivi,

which we will rewrite as

m =
k∑
i=1

bαicvi +
k∑
i=1

{αi}vi.

The set
∑k

i=1[0, 1)vi is bounded, so the set of elements in σ ∩M that can

be written as
∑k

i=1{αi}vi is finite. This set, together with all of vi, is then
seen to generate the semigroup.

Definition 29.5. The affine toric variety associated to the cone σ is defined
as

Aσ := SpecC[σ ∩M ].

If someone does not want to use the language of schemes,29.1 they should
think of Aσ as the set of maximal ideals in C[σ ∩M ] or, even better, as a
subvariety in Cr obtained by looking at r generators of C[σ ∩M ] and the
ideal of their relations.

We will illustrate the construction with a few examples. In all of them,
we will have M = Z2.

• Consider σ = R2
≥0. The semigroup σ∩M = Z2

≥0 is freely generated by
(1, 0) and (0, 1). Therefore, the semigroup ring C[σ∩M ] is isomorphic
to C[x1, x2] with x1 = [(1, 0)] and x2 = [(0, 1)], and Aσ ∼= C2.

• Consider σ = R≥0(1, 0) + R≥0(1, 2), see picture below.

29.1 That would be us.
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The semigroup σ ∩ M is generated by (1, 0), (1, 2) and (1, 1). The
corresponding generators u = [(1, 0)], v = [(1, 2)], w = [(1, 1)] satisfy
uv − w2 = 0, so we get precisely the singular surface in C3 with the
A1 singularity at the origin.

• More generally, if σ = R≥0(1, 0) + R≥0(n − 1, n), then C[σ ∩M ] is
generated by u = [(1, 0)], v = [(n − 1, n)], w = [(1, 1)] which satisfy
the relation uv − wn = 0, and we get

Aσ ∼= {uv − wn = 0} ⊂ C3,

which is a surface C2/(Z/nZ) with the An−1 singularity at the origin,
considered in Section 17.

Remark 29.6. The connection to (the beginning of) Section 17 is even
more clear if one considers a different lattice M , namely

{(a, b) ∈ Z2, a = bmodn}

and the cone R2
≥0. More generally, for any finite abelian subgroup G of

GL(n,C), the quotient Cn/G is an affine toric variety. Indeed, one can
diagonalize the action of G, and consider the lattice M of multi-degrees of
G-invariant Laurent monomials, and the cone σ = Rn≥0.

The real power of toric geometry comes from being able to glue affine
toric varieties to get more complicated toric varieties, for example projective
spaces. The relevant data is that of the fans in the dual space.
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Definition 29.7. Let N ⊆ NR be a lattice. A fan Σ in N is a nonempty
finite collection of rational polyhedral cones in NR which satisfy the following.

• All cones σ ∈ Σ satisfy σ ∩ (−σ) = {0}.

• For all σ1, σ2 ∈ Σ, the intersection σ1 ∩ σ2 is a face29.2 in each σi.

• For any σ ∈ Σ, all faces of σ are in Σ. In particular, {0} ∈ Σ.

The stereotypical example of a fan is the following. The lattice is Z2, and
the fan Σ consists of seven cones: three of dimension 2, three of dimension
1 and the zero cone {(0, 0)}, namely

R≥0(1, 0) + R≥0(0, 1), R≥0(0, 1) + R≥0(−1,−1), R≥0(−1,−1) + R≥0(1, 0),
R≥0(1, 0), R≥0(0, 1), R≥0(−1,−1), {(0, 0)}.

(29.1)

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
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•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

(0, 0)

The precise definition is a bit bothersome, but to every fan Σ one can as-
sociate a toric variety PΣ obtained by gluing affine toric varieties SpecC[σ∨∩
M ], σ ∈ Σ where M is the lattice dual to N and σ∨ is the cone of linear
functions that are nonnegative on σ. We will now give, obviously without
proof, several examples to indicate how some of the varieties we have seen
are in fact toric.

• Consider the lattice N = Z and the fan Σ = {R≥0,R≤0, {0}}.
29.2 A face of a cone σ is an intersection of σ with the boundary of a linear halfspace that

contains it.
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The corresponding toric variety PΣ is naturally isomorphic to CP1.
The three SpecC[σ∨ ∩M ] are (in the usual notations) x0 6= 0, x1 6= 0
and their intersection.

• For the fan of (29.1), we have PΣ
∼= CP2. The maximum dimensional

cones correspond to the usual charts xi 6= 0, and the rest correspond
to their intersections.

• Consider the fan in Z2 that consists of the cones R≥0(1, 0)+R≥0(1, 1),
R≥0(1, 1) + R≥0(0, 1) and their faces.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

(0, 0)

The corresponding variety Pσ is the blowup of C2 at the origin.

Remark 29.8. For σ = {0}, the dual cone is MR, so the affine toric variety
is simply SpecC[M ], which is isomorphic to (C∗)rkN . The latter is known
as the algebraic torus because it is homotopic to (S1)rkN . Moreover, the
group structure on (C∗)rkN extends to the action of it on PΣ. This is where
the term toric comes from.

Some maps between toric varieties can be be described combinatorially.
Suppose that we have a map of lattices µ : N ′ → N which induces the
map N ′R → NR which we also call µ. Suppose we have fans Σ′ and Σ in
respective lattices. If for every cone σ′ ∈ Σ′ there exists a cone σ in Σ such
that µ(σ′) ⊆ σ, then there is a natural map PΣ′ → PΣ. For example, the
maps from the blowup of C2 at the origin to C2 and to CP1 can be described
in this way.

137



•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

(0, 0)
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

(0, 0)

•

•

•

•

•

0

Another example of a toric morphism is the following. Consider the fan
in Z3 with seven cones

R≥0(1, 0, 0) + R≥0(0, 1, 0), R≥0(0, 1, 0) + R≥0(0, 0, 1),
R≥0(0, 0, 1) + R≥0(1, 0, 0), R≥0(1, 0, 0), R≥0(0, 1, 0), R≥0(0, 0, 1), {0}.

(29.2)
The map Z3 → Z2 given by (a, b, c) 7→ (a−c, b−c) sends these cones exactly
into the same cones for the CP2 fan, see the very instructive picture below.

(0, 0, 0) (0, 0)

C3 \ {0} CP2

The trick it to view the picture on the left as three-dimensional (the proper
faces of the positive octant), while viewing the picture on the right as flat.
The corresponding morphism of toric varieties is the natural quotient map
C3 \ {0} → CP2. This idea of mimicking cones of a fan as some set of
faces of the positive octant generalizes to the homogeneous coordinate ring
construction of Cox [10].
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When the map µ : N ′ → N is an isomorphism, as in the case of the blow-
down morphism above, the map PΣ′ → PΣ is a birational morphism. This,
in particular, allows one to find resolutions of toric singularities. Namely, a
toric variety PΣ is smooth if and only if every cone σ ∈ Σ is generated by
a part of an integral basis of N . As a result, a resolution of singularities
of PΣ is given by subdividing all cones of Σ into smaller cones that happen
to satisfy the above smoothness property. The best example of this is the
resolution of the An−1 singularity. The dual cone to R2

≥0 with the lattice

{(a, b) ∈ Z2, a = bmodn}

is the cone R2
≥0 with the lattice

N = Z2 + Z(
1

n
,− 1

n
).

The corresponding subdivision of the cone is given in the picture below, and
corresponds precisely to the resolution of An−1 singularities by successive
blowups that we considered in Section 17. The blue rays introduced in the
middle of the cone correspond to the exceptional CP1-s on the resolution.

•
•
•

•
•
•

•
•
•
•
•

•
•
•
•
•

· · ·

· · ·

· · ·

· · ·

•
(1, 0)

(0, 1)

(0, 0)

Remark 29.9. Among the ADE singularities, only An singularities are
toric. The groups in Dn≥4, E6, E7, E8 cases are not abelian, so the quotients
are more complicated.
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Toric varieties provide some natural examples of various pathologies. For
instance, they can give examples of Weil divisors that are not Cartier. There
are also compact toric varieties that can not be embedded into a projective
space. We refer the interested reader to the Fulton’s book [15].

Exercise 1. Let σ = R≥0(1, 0)+R≥0(1,
√

2) be a non-rational polyhedral
cone. Prove that the semigroup σ ∩Z2 is not finitely generated. Prove that
the semigroup ring C[σ ∩ Z2] is not Noetherian.

Exercise 2. Prove that the blowup of P2 at two points is isomorphic to
the blowup ot CP1×CP1 at one point using toric geometry. Hint: Subdivide
the second and third cone in (29.1) to blow up two points on CP2.

Exercise 3*. Consider the action of G = Z/7Z on C2 with the generator

(x, y) 7→ (ξx, ξ3y)

where ξ = e2πi/7 is the seventh root of 1. Compute C2/G as a toric variety,
and find its toric resolution of singularities.

30 Final comments.

In this section I want to list several topics that unfortunately did not make
it into these notes but could perhaps be included in an introductory course
in algebraic geometry.

• Probably the most important topic omitted here is Hodge theory. One
can use it to talk about polarizations of abelian varieties. Torelli the-
orem can definitely be stated.

• Moduli spaces of curves could be briefly covered without too much
trouble. One could even try to hint at the concept of Deligne-Mumford
stack, probably in its differential geometry incarnation as an orbifold.

• I have not touched upon the positive characteristics phenomena, but
an expert could likely introduce them.

• While I talked about rationality, the related concepts of unirationality
and rational connectedness were omitted. One could definitely make
a lecture out of that.
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Progr. Math., 129 Birkhäuser Boston, Inc., Boston, MA, 1995.
https://arxiv.org/abs/hep-th/9405035

[24] M. Kreuzer, H. Skarke, Complete classification of reflexive polyhedra
in four dimensions, Adv. Theor. Math. Phys.4(2000), no.6, 1209-
1230.

[25] M. Nagata, On the fourteenth problem of Hilbert. Proc. ICM Edin-
burgh (1958), 459-462.

142



[26] G. Prasad, S.-K. Yeung, Fake projective planes, Invent. Math. 168
(2007), 321-370; Addendum, 182 (2010), 213-227; Addendum. Invent.
Math. 168(2007), 321-370.

[27] J.-P. Serre, A course in arithmetic. Grad. Texts in Math., No. 7.
Springer-Verlag, New York-Heidelberg, 1973.

[28] R. Vakil, The rising sea. Foundations of algebraic geometry.
https://math.stanford.edu/˜vakil/216blog/FOAGfeb2124public.pdf

[29] A. Onishchik, E. Vinberg, Lie groups and algebraic groups. Springer
Ser. Soviet Math., Springer-Verlag, Berlin, 1990.

143


	Preface.
	Algebraic subsets of Cn and Hilbert's Nullstellensatz.
	Irreducible components. Dimension theory. Projective spaces. Algebraic varieties.
	Hilbert polynomial. Statement of Bezout's Theorem on intersections of plane curves.
	Proof of Bezout's Theorem on intersection of plane curves.
	Line bundles and vector bundles.
	Line bundle O(1) on C¶n. Maps to projective spaces.
	Weil and Cartier divisors and class groups.
	Cartier divisors as meromorphic sections of line bundles.
	Cubic curves in C¶2. Group law.
	Cubic curves as complex Lie groups. Lattice description. Elliptic functions.
	Weierstrass embedding of C/L into C¶2.
	Jacobi theta function and divisors on elliptic curves. Elliptic curves over Q.
	Genus of complex algebraic curves and Riemann-Hurwitz formula.
	Blowup of a point in C2. Birational equivalence of algebraic varieties.
	Finite group actions on affine algebraic varieties and complex manifolds. Subgroups of SL2(C).
	Resolutions of An and D4 singularities.
	More resolutions of ADE singularities.
	Overview of intersection theory. Surfaces.
	Rational surfaces. Del Pezzo surfaces.
	Kodaira dimension and classification of algebraic surfaces.
	Chern classes of vector bundles. Chern character. Euler sequence.
	Cohomology of vector bundles and Hirzebruch-Riemann-Roch formula. Example: (C¶n,O(k)).
	Introduction to Grassmannians.
	Grassmannians continued. Number of lines that intersect four given lines in C¶3.
	Mirror Symmetry.
	Schemes.
	Modular curves and modular forms.
	Toric varieties.
	Final comments.

